首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In contrast to the traditional multistep synthesis, we demonstrate herein a two‐step synthesis shortcut to triphenylamine‐based hole‐transporting materials (HTMs) through sequential direct C?H arylations. These hole‐transporting molecules are fabricated in perovskite‐based solar cells (PSCs) that exhibit promising efficiencies up to 17.69 %, which is comparable to PSCs utilizing commercially available 2,2′,7,7′‐tetrakis[N,N‐di(4‐methoxyphenyl)amino]‐9,9′‐spirobifluorene (spiro‐OMeTAD) as the HTM. This is the first report describing the use of step‐saving C?H activations/arylations in the facile synthesis of small‐molecule HTMs for perovskite solar cells.  相似文献   

2.
A novel hole‐transporting molecule (F101) based on a furan core has been synthesized by means of a short, high‐yielding route. When used as the hole‐transporting material (HTM) in mesoporous methylammonium lead halide perovskite solar cells (PSCs) it produced better device performance than the current state‐of‐the‐art HTM 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). The F101‐HTM‐based device exhibited both slightly higher Jsc (19.63 vs. 18.41 mA cm?2) and Voc (1.1 vs. 1.05 V) resulting in a marginally higher power conversion efficiency (PCE) (13.1 vs. 13 %). The steady‐state and time‐resolved photoluminescence show that F101 has significant charge extraction ability. The simple molecular structure, short synthesis route with high yield and better performance in devices makes F101 an excellent candidate for replacing the expensive spiro‐OMeTAD as HTM in PSCs.  相似文献   

3.
The 4,4′‐dimethoxydiphenylamine‐substituted 9,9′‐bifluorenylidene ( KR216 ) hole transporting material has been synthesized using a straightforward two‐step procedure from commercially available and inexpensive starting reagents, mimicking the synthetically challenging 9,9′‐spirobifluorene moiety of the well‐studied spiro‐OMeTAD. A power conversion efficiency of 17.8 % has been reached employing a novel HTM in a perovskite solar cells.  相似文献   

4.
Hybrid organic‐inorganic perovskite solar cells (PSCs) have shown significant potential for use in the energy field. Typically, hole‐transporting materials (HTMs) play an important role in affecting the power conversion efficiency (PCE) of PSCs. A deep understanding of the structure‐property relationship plays a vital role in developing efficient HTMs. Herein, the relationship between the structure and properties of two small organic HTMs H2,5 and H3,4 were systematically investigated in terms of the electronic and optical properties, the hole‐transporting behavior by using density functional theory (DFT) and Marcus electron transfer theory. The results demonstrated that the high power conversion efficiency of the H2,5‐ based PSC was caused by strong interactions with the perovskite material on the interface and an enhanced hole mobility in H2,5 compared with H3,4 . The strong interaction derives from the short bond length of O atom of HTM and Pb atom of perovskite material, and the highly hole mobility derives from the quasi‐planar conjugated conformation and tight packing model of neighboring molecules in H2,5 . In addition, we found that the planar structure enhances the intermolecular interaction between HTM and perovskite materials compared with the ′V′‐shaped molecule. Importantly, we also note that the HOMO level of the isolated molecule is not always proportional to the open‐circuit voltages of PSCs since the HOMO level might move toward a higher level when the interaction between HTM and interface of perovskite was included. The work gives essential information for rational designing efficient HTMs.  相似文献   

5.
The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this level of performance. The use of a hole transport material (HTM) remains indispensable in perovskite solar cells. Perovskites can conduct holes, but they are present at low levels, and for efficient charge extraction a HTM layer is a prerequisite. Herein we provide an overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials.  相似文献   

6.
The construction of state‐of‐the‐art hole‐transporting materials (HTMs) is challenging regarding the appropriate molecular configuration for simultaneously achieving high morphology uniformity and charge mobility, especially because of the lack of appropriate building blocks. Herein a semi‐locked tetrathienylethene (TTE) serves as a promising building block for HTMs by fine‐tuning molecular planarity. Upon incorporation of four triphenylamine groups, the resulting TTE represents the first hybrid orthogonal and planar conformation, thus leading to the desirable electronic and morphological properties in perovskite solar cells (PSCs). Owing to its high hole mobility, deep lying HOMO level, and excellent thin film quality, the dopant‐free TTE‐based PSCs exhibit a very promising efficiency of over 20 % with long‐term stability, achieving to date the best performances among dopant‐free HTM‐based planar n‐i‐p structured PSCs.  相似文献   

7.
Inspired by the structural feature of the classical hole‐transport material (HTM), Spiro‐OMeTAD, many analogues based on a highly symmetrical spiro‐core were reported for perovskite solar cells (PSCs). However, these HTMs were prone to crystallize because of the high molecular symmetry, forming non‐uniform films, unfavorable for the device stability and large‐area processing. By lowering the symmetry of spiro‐core, we report herein a novel spirobisindane‐based HTM, Spiro‐I, which could form amorphous films with high uniformity and morphological stability. Compared to the Spiro‐OMeTAD‐based PSCs, those containing Spiro‐I exhibit similar efficiencies for small area but higher ones for large area (1 cm2), and especially much higher air stability (retaining 80 % of initial PCE after 2400 h storage without encapsulation). Moreover, the Spiro‐I can be synthesized from a cheap starting material bisphenol A and used with a small amount for the device fabrication.  相似文献   

8.
Two new electron‐rich molecules based on 3,4‐phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole‐transporting materials (HTMs) in perovskite solar cells (PSCs). X‐ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT‐core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10?4 cm2 V?1 s?1, being higher than that of spiro‐OMeTAD, 2.34×10?5 cm2 V?1 s?1). The PSC based on MeO‐PheDOT as HTM exhibits a short‐circuit current density (Jsc) of 18.31 mA cm?2, an open‐circuit potential (Voc) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high‐efficiency and low‐cost HTMs for PSCs.  相似文献   

9.
《化学:亚洲杂志》2017,12(9):958-962
Perovskite solar cells are considered a promising technology for solar‐energy conversion, with power conversion efficiencies currently exceeding 20 %. In most of the reported devices, Spiro‐OMeTAD is used for positive‐charge extraction and transport layer. Although a number of alternative hole‐transporting materials with different aromatic or heteroaromatic fragments have already been synthesized, a cheap and well‐performing hole‐transporting material is still in high demand. In this work, a two‐step synthesis of a carbazole‐based hole‐transporting material is presented. Synthesized compounds exhibited amorphous nature, good solubility and thermal stability. The perovskite solar cells employing the newly synthesized material generated a power conversion efficiency of 16.5 % which is slightly lower than that obtained with Spiro‐OMeTAD (17.5 %). The low‐cost synthesis and high performance makes our hole‐transport material promising for applications in perovskite‐based optoelectronic devices.  相似文献   

10.
A high power conversion efficiency (PCE) of 5.5 % was achieved by efficiently incorporating a diketopyrrolopyrrole‐based dye with a conducting polymer poly(3,4‐ethylenediothiophene) (PEDOT) hole‐transporting material (HTM) that was formed in situ, compared with a PCE of 2.9 % for small molecular spiro‐OMeTAD‐based solid‐state dye solar cells (sDSCs). The high PCE for PEDOT‐based sDSCs is mainly attributed to the significantly enhanced charge‐collection efficiency, as a result of the three‐order‐of‐magnitude higher hole conductivity (0.53 S cm?1) compared with that of the widely used low molecular weight HTM spiro‐OMeTAD (3.5×10?4 S cm?1).  相似文献   

11.
Spiro‐OMeTAD is widely used as thehole‐transporting material (HTM) in perovskite solar cells (PSC), which extracts positive charges and protects the perovskite materials from metal electrode, setting a new world‐record efficiency of more than 20 %. Spiro‐OMeTAD layer engross moisture leading to the degradation of perovskite, and therefore, has poor air stability. It is also expensive therefore limiting scale‐up, so macrocyclic metal complex derivatives (MMDs) could be a suitable replacement. Our review covers low‐cost, high yield hydrophobic materials with minimal steps required for synthesis of efficient HTMs for planar/mesostructured PSCs. The MMDs based devices demonstrated PCEs around 19 % and showed stability for a longer duration, indicating that MMDs are a promising alternative to spiro‐OMeTAD and also easy to scale‐up via solution approach. Additionally, this review describes how optical and electrical properties of MMDs change with chemical structure, allowing for the design of novel hole‐mobility materials to achieve negligible hysteresis and act as effective functional barriers against moisture which results in a significant increase in the stability of the device. We provide an overview of the apt green‐synthesis, characterization, stability and implementation of the various classes of macrocyclic metal complex derivatives as HTM for photovoltaic applications.  相似文献   

12.
A dichlorobenzene‐functionalized hole‐transporting material (HTM) is developed for a CH3NH3PbI3‐based perovskite solar cell. Notwithstanding the similarity of the frontier molecular orbital energy levels, optical properties, and hole mobility between the functionalized HTM [a polymer composed of 2′‐butyloctyl‐4,6‐dibromo‐3‐fluorothieno[3,4‐b]thiophene‐2‐carboxylate (TT‐BO), 3′,4′‐dichlorobenzyl‐4,6‐dibromo‐3‐fluorothieno[3,4‐b]thiophene‐2‐carboxylate (TT‐DCB), and 2,6‐bis(trimethyltin)‐4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐EH), denoted PTB‐DCB21] and the nonfunctionalized polymer [a polymer composed of thieno[3,4‐b]thiophene (TT) and benzo[1,2‐b:4,5‐b′]dithiophene (BDT), denoted PTB‐BO], a higher power conversion efficiency for PTB‐DCB21 (8.7 %) than that for PTB‐BO (7.4 %) is achieved because of a higher photocurrent and voltage. The high efficiency is even obtained without including additives, such as lithium bis(trifluoromethanesulfonyl)imide and/or 4‐tert‐butylpyridine, that are commonly used to improve the conductivity of the HTM. Transient photocurrent–voltage studies show that the PTB‐DCB21‐based device exhibits faster electron transport and slower charge recombination; this might be related to better interfacial contact through intermolecular chemical interactions between the perovskite and the 3,4‐dichlorobenzyl group in PTB‐DCB21.  相似文献   

13.
The small organic molecular Dioctylbenzothienobenzothiophene (C8‐BTBT) has been explored as hole transport material (HTM) to replace PEDOT:PSS in inverted perovskite solar cells (PVSCs). MAPbI3 perovskite films depositd onto C8‐BTBT are smooth and uniform, with negligible residual of PbI2 and large grain size even larger than 1 μm. Our champion C8‐BTBT based devices reached a high power conversion efficiency (PCE) of 15.46% with marginal hysteresis, much higher than that of 11.50% achieved using PEDOT:PSS. Besides, devices adopting C8‐BTBT as substrate show superior stability compared with the PEDOT:PSS based devices when stored under ambient conditions with a relative humidity of (25±5)%.  相似文献   

14.
Direct C H arylation coupling reaction has gained significant importance in synthesis of conjugated polymers for organic electronic applications. We report here a facile and straightforward method called “direct C H arylation” reaction to synthesize conjugated 3,4-dioxythiophene and 1,4-dialkoxybenzene based copolymers as hole transport material (HTM) for perovskite solar cells. Two electron-rich conjugated polymers P1-2 were synthesized, in which 1,4-dibromo-2,5-bis(dodecyloxy)benzene and 3,4-dialkoxy-thiophene units were used for polymerization. The resulting polymers were characterized and exhibited high solubility in organic solvents. Electrochemical and optical characterizations were carried out by cyclic voltammetry and UV–Vis–NIR absorption spectroscopy and found that these polymers show higher-lying HOMO energy levels with wide band gap. Density functional theory calculation was performed on these polymers ( P1-2 ) and correlated with our experimental results. Finally, perovskite solar cells were fabricated by solution-processable deposition of P1-2 as dopant-free HTM with device geometry ITO/SnO2/Perovskite/HTM( P1 / P2 )/Ag and achieved a maximum power conversion efficiency of 5.28%. This study provides information on designing and simple preparation by direct C H arylation reaction of higher-lying HOMO energy level polymer as HTM for perovskite solar cells.  相似文献   

15.
Two new hole‐transporting materials (HTMs), BX‐OMeTAD and BTX‐OMeTAD , based on xanthene and thioxanthene units, respectively, and bearing p‐methoxydiphenylamine peripheral groups, are presented for their use in perovskite solar cells (PSCs). The novelty of the newly designed molecules relies on the use of a single carbon‐carbon bond ‘C?C’ as a linker between the two functionalized heterocycles, which increases the flexibility of the molecule compared with the more rigid structure of the widely used HTM spiro‐OMeTAD. The new HTMs display a limited absorbance in the visible region, due to the lack of conjugation between the two molecular halves, and the chemical design used has a remarkably impact on the thermal properties when compared to spiro‐OMeTAD. BX‐OMeTAD and BTX‐OMeTAD have been tested in ([(FAPbI3)0.87(MAPbBr3)0.13]0.92[CsPbI3]0.08)‐based PSC devices exhibiting power conversion efficiencies of 14.19 and 16.55 %, respectively. The efficiencies reached, although lower than those measured for spiro‐OMeTAD (19.63 %), are good enough to consider the chemical strategy used as an interesting via to design HTMs for PSCs.  相似文献   

16.
A readily available small molecular hole‐transporting material (HTM), OMe‐TATPyr, was synthesized and tested in perovskite solar cells (PSCs). OMe‐TATPyr is a two‐dimensional π‐conjugated molecule with a pyrene core and four phenyl‐thiophene bridged triarylamine groups. It can be readily synthesized in gram scale with a low lab cost of around US$ 50 g?1. The incorporation of the phenyl‐thiophene units in OMe‐TATPyr are beneficial for not only carrier transportation through improved charge delocalization and intermolecular stacking, but also potential trap passivation via Pb–S interaction as supported by depth‐profiling XPS, photoluminescence, and electrochemical impedance analysis. As a result, an impressive best power conversion efficiency (PCE) of up to 20.6 % and an average PCE of 20.0 % with good stability has been achieved for mixed‐cation PSCs with OMe‐TATPyr with an area of 0.09 cm2. A device with an area of 1.08 cm2 based on OMe‐TATPyr demonstrates a PCE of 17.3 %.  相似文献   

17.
Hole transporting material (HTM) is a significant component to achieve the high performance perovskite solar cells (PSCs). Over the years, inorganic, organic and hybrid (organic‐inorganic) material based HTMs have been developed and investigated successfully. Today, perovskite solar cells achieved the efficiency of 22.1 % with with 2,2’,7,7’‐tetrakis(N,N‐di‐p‐methoxyphenyl‐amine) 9,9‐spirobifluorene (spiro‐OMeTAD) as HTM. Nevertheless, synthesis and cost of organic HTMs is a major challenging issue and therefore alternative materials are required. From the past few years, inorganic HTMs showed large improvement in power conversion efficiency (PCE) and stability. Recently CuOx reached the PCE of 19.0% with better stability. These developments affirms that inorganic HTMs are better alternativesto the organic HTMs for next generation PSCs. In this report, we mainly focussed on the recent advances of inorganic and hybrid HTMs for PSCs and highlighted the efficiency and stability of PSCs improved by changing metal oxides as HTMs. Consequently, we expect that energy levels of these inorganic HTMs matches very well with the valence band of perovskites and improved efficiency helps in future practical deployment of low cost PSCs.  相似文献   

18.
Hybrid organic–inorganic lead halide perovskite APbX3 pigments, such as methylammonium lead iodide, have recently emerged as excellent light harvesters in solid‐state mesoscopic solar cells. An important target for the further improvement of the performance of perovskite‐based photovoltaics is to extend their optical‐absorption onset further into the red to enhance solar‐light harvesting. Herein, we show that this goal can be reached by using a mixture of formamidinium (HN=CHNH3+, FA) and methylammonium (CH3NH3+, MA) cations in the A position of the APbI3 perovskite structure. This combination leads to an enhanced short‐circuit current and thus superior devices to those based on only CH3NH3+. This concept has not been applied previously in perovskite‐based solar cells. It shows great potential as a versatile tool to tune the structural, electrical, and optoelectronic properties of the light‐harvesting materials.  相似文献   

19.
Extending the spectral absorption of organolead halide perovskite solar cells from visible into near‐infrared (NIR) range renders the minimization of non‐absorption loss of solar photons with improved energy alignment. Herein, we report on, for the first time, a viable strategy of capitalizing on judiciously synthesized monodisperse NaYF4:Yb/Er upconversion nanoparticles (UCNPs) as the mesoporous electrode for CH3NH3PbI3 perovskite solar cells and more importantly confer perovskite solar cells to be operative under NIR light. Uniform NaYF4:Yb/Er UCNPs are first crafted by employing rationally designed double hydrophilic star‐like poly(acrylic acid)‐block‐poly(ethylene oxide) (PAA‐b‐PEO) diblock copolymer as nanoreactor, imparting the solubility of UCNPs and the tunability of film porosity during the manufacturing process. The subsequent incorporation of NaYF4:Yb/Er UCNPs as the mesoporous electrode led to a high efficiency of 17.8 %, which was further increased to 18.1 % upon NIR irradiation. The in situ integration of upconversion materials as functional components of perovskite solar cells offers the expanded flexibility for engineering the device architecture and broadening the solar spectral use.  相似文献   

20.
As an environmentally friendly perovskite material with low bandgap, Tin (Sn)‐based perovskite has drawn much attention. A simple and effective method for fabricating high‐quality Sn‐Pb binary perovskite film is highly desired. Here, with methylammonium chloride (MACl) post‐treatment to assist vertical recrystallization, we fabricated high quality FA0.75Cs0.25Pb0.5Sn0.5I3 perovskite film via one‐step processing method. This recrystallization method was first used in Sn‐based perovskite. The obtained film consists of vertically aligned grains with high crystallinity, which contributes to a power conversion efficiency (PCE) of 14.03% in corresponding perovskite solar cell (PVSC). The cells maintained 80% of their initial PCEs after being stored for 30 d in glove‐box. This simple, effective method provides an easy way to fabricate high performance Sn‐Pb binary PVSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号