首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The first examples of dimeric, di‐PtII‐containing heteropolytungstates are reported. The two isomeric di‐platinum(II)‐containing 22‐tungsto‐2‐phosphates [anti‐PtII2(α‐PW11O39)2]10? ( 1 a ) and [syn‐PtII2(α‐PW11O39)2]10? ( 2 a ) were synthesized in aqueous pH 3.5 medium using one‐pot procedures. Polyanions 1 a and 2 a contain a core comprising two face‐on PtO4 units, with a Pt???Pt distance of 2.9–3 Å. Both polyanions were investigated by single‐crystal XRD, IR, TGA, UV/Vis, 31P NMR, ESI‐MS, CID‐MS/MS, electrochemistry, and DFT. On the basis of DFT and electrochemistry, we demonstrated that the {Pt2II} moiety in 1 a and 2 a can undergo fully reversible two‐electron oxidation to {Pt2III}, accompanied by formation of a single Pt?Pt bond. Hence we have discovered the novel subclass of PtIII‐containing heteropolytungstates.  相似文献   

2.
[Au2Pt2(PPh3)4(CN-xylyl)4](PF6)2 (CN-xylyl = 2,6-dimethylphenylisocyanide) has been synthesised from [Pt(C2H4)(PPh3)2] and [Au(CN-xylyl)2]+ in CH2Cl2 and in the presence of an excess of CN-xylyl. A single crystal X-ray diffraction study has demonstrated that the metal atoms define a flattened butterfly with the gold atoms occupying the higher connectivity sites and forming a short bond of length 2.590(2) Å. The platinum—gold distances lie in the range 2.710(2)–3.026(2) Å.  相似文献   

3.
The carbon–carbon (C?C) bond activation of [n]cycloparaphenylenes ([n]CPPs) by a transition‐metal complex is herein reported. The Pt0 complex Pt(PPh3)4 regioselectively cleaves two C?C σ bonds of [5] CPP and [6]CPP to give cyclic dinuclear platinum complexes in high yields. Theoretical calculations reveal that the relief of ring strain drives the reaction. The cyclic complex was further transformed into a cyclic diketone by using a CO insertion reaction.  相似文献   

4.
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au? M (M=Au, Pd, and Pt) core–shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au? Au, Au? Pd, and Au? Pt core–shell nanostructures with typical porous shells. Moreover, the Au? Au isomeric core–shell nanostructure is reported for the first time. The lower oxidation states of AuI, PdII, and PtII are supposed to contribute to the formation of porous core–shell nanostructures instead of yolk‐shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au? Pd core–shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core–shell nanostructures. As expected, the Au? Pd core–shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (If/Ib is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au? M (M=Au, Pd, and Pt) core–shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface‐enhanced Raman scattering, and so forth.  相似文献   

5.
A macrocyclic tetranuclear platinum(II) complex [Pt(en)(4,4′‐bpy)]4(NO3)8 ( 1 ?(NO3)8; en=ethylenediamine, 4,4′‐bpy=4,4′‐bipyridine) and a mononuclear platinum(IV) complex [Pt(en)2Br2]Br2 ( 2 ?Br2) formed two kinds of PtII/PtIV mixed valence assemblies when reacted: a discrete host–guest complex 1 ? 2 ?Br10 ( 3 ) and an extended 1‐D zigzag sheet 1 ?( 2 )3?Br8(NO3)6 ( 4 ). Single crystal X‐ray analysis showed that the dimensions of the assemblies could be stoichiometrically controlled. Resonance Raman spectra suggested the presence of an intervalence interaction, which is typically observed for quasi‐1‐D halogen‐bridged MII/MIV complexes. The intervalence interaction indicates the presence of an isolated {PtII???X? PtIV? X???PtII} moiety in the structure of 4 . On the basis of electronic spectra and polarized reflectance measurements, we conclude that 4 exhibits intervalence charge transfer (IVCT) bands. A Kramers–Kronig transformation was carried out to obtain an optical conductivity spectrum, and two sub‐bands corresponding to slightly different PtII–PtIV distances were observed.  相似文献   

6.
The aurophilicity exhibited by AuI complexes depends strongly on the nature of the supporting ligands present and the length of the Au–element (Au—E) bond may be used as a measure of the donor–acceptor properties of the coordinated ligands. A binuclear iron–gold complex, [1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene‐2κC2]dicarbonyl‐1κ2C‐(1η5‐cyclopentadienyl)gold(I)iron(II)(AuFe) benzene trisolvate, [AuFe(C5H5)(C27H36N2)(CO)2]·3C6H6, was prepared by reaction of K[CpFe(CO)2] (Cp is cyclopentadienyl) with (NHC)AuCl [NHC = 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene]. In addition to the binuclear complex, the asymmetric unit contains three benzene solvent molecules. This is the first example of a two‐coordinated Au atom bonded to an Fe and a C atom of an N‐heterocyclic carbene.  相似文献   

7.
It was serendipitously observed that cis‐[PtCl2(NCEt)PPh3] reacted differently with either racemic or enantiopure 4‐aza[6]helicene, giving respectively cis (racemic) and trans (enantiopure) [PtIICl2(4‐aza[6]helicene)PPh3] complexes. This unexpected reactivity is explained through a dynamic process (crystallization‐induced diastereoselective transformation) and enables a new aspect of reactivity in chiral transition‐metal complexes to be addressed.  相似文献   

8.
Heterobimetallic complexes of formula [M{(PPh2)2C2B9H10}(S2C2B10H10)M′(PPh3)] (M=Pd, Pt; M′=Au, Ag, Cu) and [Ni{(PPh2)2C2B9H10}(S2C2B10H10)Au(PPh3)] were obtained from the reaction of [M{(PPh2)2C2B10H10}(S2C2B10H10)] (M=Pd, Pt) with [M′(PPh3)]+ (M′=Au, Ag, Cu) or by one‐pot synthesis from [(SH)2C2B10H10], (PPh2)2C2B10H10, NiCl2 ? 6 H2O, and [Au(PPh3)]+. They display d8–d10 intermetallic interactions and emit red light in the solid state at 77 K. Theoretical studies on [M{(PPh2)2C2B9H10}(S2C2B10H10)Au(PPh3)] (M=Pd, Pt, Ni) attribute the luminescence to ligand (thiolate, L)‐to‐“P2‐M‐S2” (ML′) charge‐transfer (LML′CT) transitions for M=Pt and to metal (M)‐to‐“P2‐M‐S2” (ML′) charge‐transfer (MML′CT) transitions for M=Ni, Pd.  相似文献   

9.
The title compound, {[PtIIPtIVI2(C2H8N2)4](HPO4)(H2PO4)I·3H2O}n, has a chain structure composed of square‐planar [Pt(en)2]2+ and elongated octa­hedral trans‐[PtI2(en)2]2+ cations (en is ethyl­ene­diamine) stacked alternately along the c axis and bridged by the I atoms; a three‐dimensionally valence‐ordered system exists with respect to the Pt sites. The title compound also has a unique cyclic tetra­mer structure composed of two hydrogenphosphate and two dihydrogenphosphate ions connected by strong hydrogen bonds [O⋯O = 2.522 (10), 2.567 (10) and 2.569 (11) Å]. The Pt and I atoms form a zigzag ⋯I—PtIV—I⋯PtII⋯ chain, with PtIV—I bond distances of 2.6997 (7) and 2.6921 (7) Å, inter­atomic PtII⋯I distances of 3.3239 (8) and 3.2902 (7) Å, and PtIV—I⋯PtII angles of 154.52 (3) and 163.64 (3)°. The structural parameters indicating the mixed‐valence state of platinum, expressed by δ = (PtIV—I)/(PtII—I), are 0.812 and 0.818 for the two independent I atoms.  相似文献   

10.
The cation of the title compound, [Au4(PPh2CH2PPhCH2PPh2)2Cl2][Au(C6F5)3Cl]2 or [Au4Cl2(C32H29P3)2][AuCl(C6F5)3]2, displays a rhomboidal geometry for the Au atoms, with short Au?Au distances of 3.104 (2) and 3.185 (1) Å; the linear coordination at the AuI atoms is distorted: P—Au—P 164.7 (2)° and P—Au—Cl 170.67 (11)°. The anion shows the expected square‐planar geometry at AuIII, with the Au atom 0.022 (5) Å out of the plane of the four donor atoms.  相似文献   

11.
The treatment of trans‐{[2, 6‐(Me2NCH2)2C6H3]SnI}2PtI2 with Na(pyt) (pyt = 2‐mercaptopyridine) yielded the unprecedented complex {{[2, 6‐(Me2NCH2)2C6H3]Sn}Pt(μ‐pyt)2I} ( 1 ), where a Sn←N coordinated stannylidenium (LSnII)+ fragment donates a to a [PtII(pyt)2I] anion. Compound 1 was characterized by NMR spectroscopy and molecular structure was determined by X‐ray diffraction analysis. The bonding situation in 1 was analyzed by DFT studies.  相似文献   

12.
The complexes [Au3(dcmp)2][X]3 {dcmp=bis(dicyclohexylphosphinomethyl)cyclohexylphosphine; X=Cl? ( 1 ), ClO4? ( 2 ), OTf? ( 3 ), PF6? ( 4 ), SCN?( 5 )}, [Ag3(dcmp)2][ClO4]3 ( 6 ), and [Ag3(dcmp)2Cl2][ClO4] ( 7 ) were prepared and their structures were determined by X‐ray crystallography. Complexes 2 – 4 display a high‐energy emission band with λmax at 442–452 nm, whereas 1 and 5 display a low‐energy emission with λmax at 558–634 nm in both solid state and in dichloromethane at 298 K. The former is assigned to the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+, whereas the latter is attributed to an exciplex formed between the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+ and the counterions. In solid state, complex [Ag3(dcmp)2][ClO4]3 ( 6 ) displays an intense emission band at 375 nm with a Stokes shift of ≈7200 cm?1 from the 1[4dσ*→5pσ] absorption band at 295 nm. The 375 nm emission band is assigned to the emission directly from the 3[4dσ*5pσ] excited state of 6 . Density functional theory (DFT) calculations revealed that the absorption and emission energies are inversely proportional to the number of metal ions (n) in polynuclear AuI and AgI linear chain complexes without close metal???anion contacts. The emission energies are extrapolated to be 715 and 446 nm for the infinite linear AuI and AgI chains, respectively, at metal???metal distances of about 2.93–3.02 Å. A QM/MM calculation on the model [Au3(dcmp)2Cl2]+ system, with Au???Cl contacts of 2.90–3.10 Å, gave optimized Au???Au distances of 2.99–3.11 Å in its lowest triplet excited state and the emission energies were calculated to be at approximately 600–690 nm, which are assigned to a three‐coordinate AuI site with its spectroscopic properties affected by AuI???AuI interactions.  相似文献   

13.
A vibrational study of the dinuclear gold ylide complexes [Au(CH2)2PPh2]2 and [Au(CH2)2PPh2]2X2 (X = Cl, Br or I) has been undertaken by Raman spectroscopy. The non-bonding AuAu interaction in the AuI dimer, [Au(CH2)2PPh2)2, at 64 cm−1 shifts to higher wavenumber in the single-bonded AuII halogen complexes, with bands at 162, 132 and 103 cm−1 for X = Cl, Br and I, respectively, being assigned to ν(AuAu). The Au-X vibration was also identified. The general trends in AuAu and Au-X stretching vibrations with changing halogen are compared with those for other dinuclear metal-metal bonded complexes, with a metal-metal bond order of one, and with those for mononuclear gold-halogen complexes.  相似文献   

14.
The Schiff base ligand in the title complex, [Pt(C9H8BrN2S2)2], is deprotonated from its tautomeric thiol form and coordinated to PtIIvia the mercapto S and β–N atoms. The configuration about PtII is a perfect square‐planar, with two equivalent Pt—N [2.023 (3) Å] and Pt—S [2.293 (1) Å] bonds. The phenyl ring is twisted against the coordination moiety Pt1/N1/N1′/S2′/S2 by 31.8 (2)°, due to the steric hindrance induced by ortho‐substituted bulky Br atom.  相似文献   

15.
The cation of the title complex salt, chlorido{2,2‐dimethyl‐N‐[(E)‐1‐(pyridin‐2‐yl)ethylidene]propane‐1,3‐diamine}platinum(II) tetrafluoridoborate, [PtCl(C12H19N3)]BF4, exhibits a nominally square‐planar PtII ion coordinated to a chloride ion [Pt—Cl = 2.3046 (9) Å] and three unique N‐atom types, viz. pyridine, imine and amine, of the tridentate Schiff base ligand formed by the 1:1 condensation of 1‐(pyridin‐2‐yl)ethanone and 2,2‐dimethylpropane‐1,3‐diamine. The cations are π‐stacked in inversion‐related pairs (dimers), with a mean plane separation of 3.426 Å, an intradimer Pt...Pt separation of 5.0785 (6) Å and a lateral shift of 3.676 Å. The centroid (Cg) of the pyridine ring is positioned approximately over the PtII ion of the neighbouring cation (Pt...Cg = 3.503 Å).  相似文献   

16.
In the title complex, [Ag2Cd(CN)4(C12H12N2)2]·H2O or cis‐[Cd{Ag(CN)2}2(5,5′‐dmbpy)2]·H2O, where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridyl, the asymmetric unit consists of a discrete neutral [Cd{Ag(CN)2}2(5,5′‐dmbpy)2] unit and a solvent water molecule. The CdII cation is coordinated by two bidentate chelate 5,5′‐dmbpy ligands and two monodentate [AgI(CN)2] anions, which are in a cis arrangement around the CdII cation, leading to an octahedral CdN6 geometry. The overall structure is stabilized by a combination of intermolecular hydrogen bonding, and AgI...AgI and π–π interactions, forming a three‐dimensional supramolecular network.  相似文献   

17.
The syntheses and crystal structures of the title Pt2II and Pt2III dimers doubly bridged with N,N‐dimethyl­guanidinate ligands, namely bis­(μ‐N,N‐dimethyl­guanidinato)bis­[(2,2′‐bipyridine)platinum(II)](Pt—Pt) bis­(hexa­fluoro­phosphate) acetonitrile disolvate, [Pt2II(C3H8N3)2(C10H8N2)2](PF6)2·2CH3CN, (I), and guanidinium bis­(μ‐N,N‐dimethyl­guanidinato)bis­[(2,2′‐bipyridine)sulfatoplatinum(III)](Pt—Pt) bis­(hexa­fluoro­phosphate) nitrate hexa­hydrate, (C3H10N3)[PtIII2(C3H8N3)2(SO4)2(C10H8N2)2]NO3·6H2O, (II), are reported. The oxidation of the Pt2II dimer into the Pt2III dimer results in a marked shortening of the Pt—Pt distance from 2.8512 (6) to 2.5656 (4) Å. The change is mainly compensated for by the change in the dihedral angle between the two Pt coordination planes upon oxidation, from 21.9 (2) to 16.9 (3)°. We attribute the relatively strong one‐dimensional stack of dimers achieved in the Pt2II compound in part to the strong PtII⋯C(bpy) associations (bpy is 2,2′‐bipyridine) in the crystal structure [Pt⋯C = 3.416 (10) and 3.361 (12) Å].  相似文献   

18.
[Pt2(PPh3)2(CN-xylyl)4]2+ (CN-xylyl = 2,6-dimethylphenyl isocyanide) and [Pt3(PPh3)2(CN-xylyl)6]2+ have been synthesized by reaction of [Pt(PPh3)2(C2H4)] with either [Pt(PPh3)2Cl2] and CN-xylyl or [Pt(CN-xylyl)4]2+. The products have been characterised by 31P{1H} and 195Pt{1H} NMR spectroscopy, and a single crystal X-ray diffraction study of the trinuclear compound has demonstrated that the skeletal atoms are linear.  相似文献   

19.
Reaction of [U{C(SiMe3)(PPh2)}(BIPM)(μ‐Cl)Li(TMEDA)(μ‐TMEDA)0.5]2 (BIPM=C(PPh2NSiMe3)2; TMEDA=Me2NCH2CH2NMe2) with [Rh(μ‐Cl)(COD)]2 (COD=cyclooctadiene) affords the heterotrimetallic UIV?RhI2 complex [U(Cl)2{C(PPh2NSiMe3)(PPh[C6H4]NSiMe3)}{Rh(COD)}{Rh(CH(SiMe3)(PPh2)}]. This complex has a very short uranium–rhodium distance, the shortest uranium–rhodium bond on record and the shortest actinide–transition metal bond in terms of formal shortness ratio. Quantum‐chemical calculations reveal a remarkable Rh UIV net double dative bond interaction, involving RhI 4d ‐ and 4dxy/xz‐type donation into vacant UIV 5f orbitals, resulting in a Wiberg/Nalewajski–Mrozek U?Rh bond order of 1.30/1.44, respectively. Despite being, formally, purely dative, the uranium–rhodium bonding interaction is the most substantial actinide–metal multiple bond yet prepared under conventional experimental conditions, as confirmed by structural, magnetic, and computational analyses.  相似文献   

20.
The title compound, catena‐poly[[[bis(ethylenediamine‐κ2N,N′)platinum(II)]‐ μ‐chlorido‐[bis(ethylenediamine)platinum(IV)]‐μ‐chlorido] tetrakis{4‐[(4‐hydroxyphenyl)diazenyl]benzenesulfonate} dihydrate], {[PtIIPtIVCl2(C2H8N2)4](HOC6H4N=NC6H4SO3)4·2H2O}n, has a linear chain structure composed of square‐planar [Pt(en)2]2+ (en is ethylenediamine) and elongated octahedral trans‐[PtCl2(en)2]2+ cations stacked alternately, bridged by Cl atoms, along the b axis. The Pt atoms are located on an inversion centre, while the Cl atoms are disordered over two sites and form a zigzag ...Cl—PtIV—Cl...PtII... chain, with a PtIV—Cl bond length of 2.3140 (14) Å, an interatomic PtII...Cl distance of 3.5969 (15) Å and a PtIV—Cl...PtII angle of 170.66 (6)°. The structural parameter indicating the mixed‐valence state of the Pt atom, expressed by δ = (PtIV—Cl)/(PtII...Cl), is 0.643.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号