首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
林东海 《中国化学》2002,20(10):937-943
Human UBCP9 is a member of the E2 family of proteins.However,instead of conjugating to ubiquitin,it conjugates to a ubiquitin bomologue SUMO-1(also known as UBL1,GMP1,SMTP3,PICT-1 and sentrin).The SUMO-1 conjugation pathway is very similar to that of ubiquin with regard to the primary sequences of the ubiquitin activating enzymes(E1),the three-dimensional structures of the ubiquitin conjugating enzymes(E2),and the chemistry of the overall conjugation pathway.The interactiov of p53 and UBC9,the E2 of the SUMO-1 pathway,has heen studied by nuclear magnetic resonance spectroscopy.A peptide corresponding to the nuclear localization domain of p53 specifically interacts with UBC9 and this interaction is likely to be important for conjugation of p53 with SUMO-1.The largest chemical shift changes on UBC9 occur at residues94 and 129-135.This region is adjacent to the active site and has slgniflcant dynamic behavior on the μs-ms and ps-ns timescales.Correlation of chemical shift changes and mobility of these residues further suggest the importance of these residues in substrate recognition.  相似文献   

2.
3.
Several genome engineering applications of CRISPR‐Cas9, an RNA‐guided DNA endonuclease, require precision control of Cas9 activity over dosage, timing, and targeted site in an organism. While some control of Cas9 activity over dose and time have been achieved using small molecules, and spatial control using light, no singular system with control over all the three attributes exists. Furthermore, the reported small‐molecule systems lack wide dynamic range, have background activity in the absence of the small‐molecule controller, and are not biologically inert, while the optogenetic systems require prolonged exposure to high‐intensity light. We previously reported a small‐molecule‐controlled Cas9 system with some dosage and temporal control. By photocaging this Cas9 activator to render it biologically inert and photoactivatable, and employing next‐generation protein engineering approaches, we have built a system with a wide dynamic range, low background, and fast photoactivation using a low‐intensity light while rendering the small‐molecule activator biologically inert. We anticipate these precision controls will propel the development of practical applications of Cas9.  相似文献   

4.
Sentrin specific proteases (SENPs) are responsible for activating and deconjugating SUMO (Small Ubiquitin like MOdifier) from target proteins. It remains difficult to study this posttranslational modification due to the lack of reagents that can be used to block the removal of SUMO from substrates. Here, we describe the identification of small molecule SENP inhibitors and active site probes containing aza-epoxide and acyloxymethyl ketone (AOMK) reactive groups. Both classes of compounds are effective inhibitors of hSENPs 1, 2, 5, and 7 while only the AOMKs efficiently inhibit hSENP6. Unlike previous reported peptide vinyl sulfones, these compounds covalently labeled the active site cysteine of multiple recombinantly expressed SENP proteases and the AOMK probe showed selective labeling of these SENPs when added to complex protein mixtures. The AOMK compound therefore represents promising new reagents to study the process of SUMO deconjugation.  相似文献   

5.
SUMO is a post‐translational modifier critical for cell cycle progression and genome stability that plays a role in tumorigenesis, thus rendering SUMO‐specific enzymes potential pharmacological targets. However, the systematic generation of tools for the activity profiling of SUMO‐specific enzymes has proven challenging. We developed a diversifiable synthetic platform for SUMO‐based probes by using a direct linear synthesis method, which permits N‐ and C‐terminal labelling to incorporate dyes and reactive warheads, respectively. In this manner, activity‐based probes (ABPs) for SUMO‐1, SUMO‐2, and SUMO‐3‐specific proteases were generated and validated in cells using gel‐based assays and confocal microscopy. We further expanded our toolbox with the synthesis of a K11‐linked diSUMO‐2 probe to study the proteolytic cleavage of SUMO chains. Together, these ABPs demonstrate the versatility and specificity of our synthetic SUMO platform for in vitro and in vivo characterization of the SUMO protease family.  相似文献   

6.
The molecular chaperone Hsp90 undergoes an ATP‐driven cycle of conformational changes in which large structural rearrangements precede ATP hydrolysis. Well‐established small‐molecule inhibitors of Hsp90 compete with ATP‐binding. We wondered whether compounds exist that can accelerate the conformational cycle. In a FRET‐based screen reporting on conformational rearrangements in Hsp90 we identified compounds. We elucidated their mode of action and showed that they can overcome the intrinsic inhibition in Hsp90 which prevents these rearrangements. The mode of action is similar to that of the co‐chaperone Aha1 which accelerates the Hsp90 ATPase. However, while the two identified compounds influence conformational changes, they target different aspects of the structural transitions. Also, the binding site determined by NMR spectroscopy is distinct. This study demonstrates that small molecules are capable of triggering specific rate‐limiting transitions in Hsp90 by mechanisms similar to those in protein cofactors.  相似文献   

7.
Triplet harvesting is a main challenge in organic light‐emitting devices (OLEDs), because the radiative decay of the triplet is spin‐forbidden. Here, we propose a new kind of OLED, in which an organic open‐shell molecule, (4‐N‐carbazolyl‐2,6‐dichlorophenyl)bis(2,4,6‐trichlorophenyl)methyl (TTM‐1Cz) radical, is used as an emitter, to circumvent the transition problem of triplet. For TTM‐1Cz, there is only one unpaired electron in the highest singly occupied molecular orbital (SOMO). When this electron is excited to the lowest singly unoccupied molecular orbital (SUMO), the SOMO is empty. Thus, transition back of the excited electron to the SOMO is totally spin‐allowed. Spectral analysis showed that electroluminescence of the OLED originated from the electron transition between SUMO and SOMO. The magneto‐electroluminescence measurements revealed that the spin configuration of the excited state of TTM‐1Cz is a doublet. Our results pave a new way to obtain 100 % internal quantum efficiency of OLEDs.  相似文献   

8.
Accounting for target flexibility and selecting “hot spots” most likely to be able to bind an inhibitor continue to be challenges in the field of structure‐based drug design, especially in the case of protein–protein interactions. Computational fragment‐based approaches using molecular dynamics (MD) simulations are a promising emerging technology having the potential to address both of these challenges. However, the optimal MD conditions permitting sufficient target flexibility while also avoiding fragment‐induced target denaturation remain ambiguous. Using one such technology (Site Identification by Ligand Competitive Saturation, SILCS), conditions were identified to either prevent denaturation or identify and exclude trajectories in which subtle but important denaturation was occurring. The target system used was the well‐characterized protein cytokine IL‐2, which is involved in a protein–protein interface and, in its unliganded crystallographic form, lacks surface pockets that can serve as small‐molecule binding sites. Nonetheless, small‐molecule inhibitors have previously been discovered that bind to two “cryptic” binding sites that emerge only in the presence of ligand binding, highlighting the important role of IL‐2 flexibility. Using the above conditions, SILCS with hydrophobic fragments was able to identify both sites based on favorable fragment binding while avoiding IL‐2 denaturation. An important additional finding was that acetonitrile, a water‐miscible fragment, fails to identify either site yet can induce target denaturation, highlighting the importance of fragment choice. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
This study characterizes the accuracy of energies and forces computed with a generalized Born (GB) model and the distance‐dependent dielectric (DDD) model with respect to detailed finite solutions of the Poisson equation (FDPE). Tests are done for a small molecule in solution and for HIV‐1 protease with inhibitor, KNI‐272. GB agrees well with FDPE for the small molecule, but less well for the protein system. The correlation between GB and FDPE energies is poorest in calculations of changes upon binding. Also, forces computed with the GB model are less accurate than energies. The DDD model is far less accurate than GB. Nanosecond stochastic dynamics simulations of HIV‐1 protease with an empty active site are used to examine the consequence of the models for the conformational preferences of the active site. Interestingly, the active site flaps remain near their starting conformations in the FDPE and GB simulations but collapse into the active site in the DDD simulation. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 295–309, 2000  相似文献   

11.
Summary A new computer program is described, which positions small molecules into clefts of protein structures (e.g. an active site of an enzyme) in such a way that hydrogen bonds can be formed with the enzyme and hydrophobic pockets are filled with hydrophobic groups. The program works in three steps. First it calculates interaction sites, which are discrete positions in space suitable to form hydrogen bonds or to fill a hydrophobic pocket. The interaction sites are derived from distributions of nonbonded contacts generated by a search through the Cambridge Structural Database. An alternative route to generate the interaction sites is the use of rules. The second step is the fit of molecular fragments onto the interaction sites. Currently we use a library of 600 fragments for the fitting. The final step in the present program is the connection of some or all of the fitted fragments to a single molecule. This is done by bridge fragments. Applications are presented for the crystal packing of benzoic acid and the enzymes dihydrofolate reductase and trypsin.  相似文献   

12.
Small ubiquitin-related modifier (SUMO)-specific protease 1 (SENP1) is a cysteine protease that catalyzes the cleavage of the C-terminus of SUMO1 for the processing of SUMO precursors and deSUMOylation of target proteins. SENP1 is considered to be a promising target for the treatment of hepatocellular carcinoma (HCC) and prostate cancer. SENP1 Gln597 is located at the unstructured loop connecting the helices α4 to α5. The Q597A mutation of SENP1 allosterically disrupts the hydrolytic reaction of SUMO1 through an unknown mechanism. Here, extensive multiple replicates of microsecond molecular dynamics (MD) simulations, coupled with principal component analysis, dynamic cross-correlation analysis, community network analysis, and binding free energy calculations, were performed to elucidate the detailed mechanism. Our MD simulations showed that the Q597A mutation induced marked dynamic conformational changes in SENP1, especially in the unstructured loop connecting the helices α4 to α5 which the mutation site occupies. Moreover, the Q597A mutation caused conformational changes to catalytic Cys603 and His533 at the active site, which might impair the catalytic activity of SENP1 in processing SUMO1. Moreover, binding free energy calculations revealed that the Q597A mutation had a minor effect on the binding affinity of SUMO1 to SENP1. Together, these results may broaden our understanding of the allosteric modulation of the SENP1−SUMO1 complex.  相似文献   

13.
In the brain of individuals with Alzheimer's disease, the regulatory protein ubiquitin is found conjugated to different lysine residues of tau protein assembled into pathological paired helical filaments. To shed light on the hitherto unexplored ubiquitination‐linked conformational transitions of tau, the availability of in vitro ubiquitin conjugation methods is of primary importance. In our work, we focused on the four‐repeat domain of tau and assembled an enzymatic machinery formed by UBE1, Ubc13, and CHIP enzymes. The enzymatic reaction resulted in monoubiquitination at multiple sites, reminiscent of the ubiquitination pattern observed in vivo. We further exploited chemoselective disulfide coupling reactions to construct three tau regioisomers with site‐specific monoubiquitination. Protein aggregation experiments revealed that the multiple enzyme‐derived products were unable to convert into amyloid fibrils, while the semisynthetic conjugates exhibited diverse capability to form filaments. This study contributes novel insight into the effects of a key post‐translational modification on aberrant protein self‐assembly.  相似文献   

14.
Simple, sensitive, and selective detection of specific biopolymers is critical in a broad range of biomedical and technological areas. We present a design of turn‐on near‐infrared (NIR) fluorescent probes with intrinsically high signal‐to‐background ratio. The fluorescent signal generation mechanism is based on the aggregation/de‐aggregation of phthalocyanine chromophores controlled by selective binding of small‐molecule “anchor” groups to a specific binding site of a target biopolymer. As a proof‐of‐concept, we demonstrate a design of a sensor for EGFR tyrosine kinase—an important target in cancer research. The universality of the fluorescent signal generation mechanism, as well as the dependence of the response selectivity on the choice of the small‐molecule “anchor” group, make it possible to use this approach to design reliable turn‐on NIR fluorescent sensors for detecting specific protein targets present in the low‐nanomolar concentration range.  相似文献   

15.
DNA sequencing or separation by conventional capillary electrophoresis with a polymer matrix has some inherent drawbacks, such as the expense of polymer matrix and limitations in sequencing read length. As DNA fragments have a linear charge‐to‐friction ratio in free solution, DNA fragments cannot be separated by size. However, size‐based separation of DNA is possible in free‐solution conjugate electrophoresis (FSCE) if a “drag‐tag” is attached to DNA fragments because the tag breaks the linear charge‐to‐friction scaling. Although several previous studies have demonstrated the feasibility of DNA separation by free‐solution conjugated electrophoresis, generation of a monodisperse drag‐tag and identification of a strong, site‐specific conjugation method between a DNA fragment and a drag‐tag are challenges that still remain. In this study, we demonstrate an efficient FSCE method by conjugating a biologically synthesized elastin‐like polypeptide (ELP) and green fluorescent protein (GFP) to DNA fragments. In addition, to produce strong and site‐specific conjugation, a methionine residue in drag‐tags is replaced with homopropargylglycine (Hpg), which can be conjugated specifically to a DNA fragment with an azide site.  相似文献   

16.
Conjugation to human serum albumin (HSA) has emerged as a powerful approach for extending the in vivo half‐life of many small molecule and peptide/protein drugs. Current HSA conjugation strategies, however, can often yield heterogeneous mixtures with inadequate pharmacokinetics, low efficacies, and variable safety profiles. Here, we designed and synthesized analogues of TAK‐242, a small molecule inhibitor of Toll‐like receptor 4, that primarily reacted with a single lysine residue of HSA. These TAK‐242‐based cyclohexene compounds demonstrated robust reactivity, and Lys64 was identified as the primary conjugation site. A bivalent HSA conjugate was also prepared in a site‐specific manner. Additionally, HSA‐cyclohexene conjugates maintained higher levels of stability both in human plasma and in mice than the corresponding maleimide conjugates. This new conjugation strategy promises to broadly enhance the performance of HSA conjugates for numerous applications.  相似文献   

17.
It is difficult to determine a chemical inhibitor's binding site in multiprotein mixtures, particularly when high-resolution structural studies are not straightforward. Building upon previous research involving photo-cross-linking and the use of mixtures of stable isotopes, we report a method, Stable Isotope Labeled Inhibitors for Cross-linking (SILIC), for mapping a small molecule inhibitor's binding site in its target protein. In SILIC, structure-activity relationship data is used to design inhibitor analogues that incorporate a photo-cross-linking group along with either natural or 'heavy' stable isotopes. An equimolar mixture of these inhibitor analogues is cross-linked to the target protein to yield a robust signature for identifying inhibitor-modified peptide fragments in complex mass spectrometry data. As a proof of concept, we applied this approach to an ATP-competitive inhibitor of kinesin-5, a widely conserved motor protein required for cell division and an anticancer drug target. This analysis, along with mutagenesis studies, suggests that the inhibitor binds at an allosteric site in the motor protein.  相似文献   

18.
This account is a review on the synthesis and transition‐metal coordination chemistry of N‐heterocyclic silylenes (NHSi’s) over the last 20 years till the present time (2012). Recently, fascinating and novel synthetic methods have been developed to access transition‐metal–NHSi complexes as an emerging class of compounds with a wealth of intriguing reactivity patterns. The striking influence of coordinating NHSi’s to transition‐metal complex fragments affording different reactivities to the “free” NHSi is a connecting theme (“leitmotif”) throughout the review, and highlights the potential of these compounds which lie at the interface of contemporary main‐group and classical organometallic chemistry towards new molecular catalysts for small‐molecule activation.  相似文献   

19.
A novel N‐Mannich base tris(2, 5‐dioxopyrrolidin‐1‐ylmethyl)‐amine (TDOPMA) was synthesized and its structure was determined by single crystal X‐ray diffraction. Unlike NH3 molecule, three C‐N‐C bond angles containing the central N atom in the tide compound are unequal and about 9° larger than H‐N‐H angles of NH3 molecule. Electrospray ionization (ESI) mass spectrometry was applied to the title compound. Its fragments were interpreted and possible fragmentation mechanism was given.  相似文献   

20.
With the rising popularity of fragment‐based approaches in drug development, more and more attention has to be devoted to the detection of false‐positive screening results. In particular, the small size and low affinity of fragments drives screening techniques to their limit. The pursuit of a false‐positive hit can cause significant loss of time and resources. Here, we present an instructive and intriguing investigation into the origin of misleading assay results for a fragment that emerged as the most potent binder for the aspartic protease endothiapepsin (EP) across multiple screening assays. This molecule shows its biological effect mainly after conversion into another entity through a reaction cascade that involves major rearrangements of its heterocyclic scaffold. The formed ligand binds EP through an induced‐fit mechanism involving remarkable electrostatic interactions. Structural information in the initial screening proved to be crucial for the identification of this false‐positive hit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号