首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The exploration of cost‐effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye‐sensitized solar cells (DSSCs). Transparent counter electrodes based on binary‐alloy metal selenides (M‐Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution‐based method and employed in efficient bifacial DSSCs. Owing to superior charge‐transfer ability for the I?/I3? redox couple, electrocatalytic activity toward I3? reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85Se, 7.85 % and 4.37 % for Ni0.85Se, 6.43 % and 4.24 % for Cu0.50Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels.  相似文献   

2.
It is generally believed that silver or silver‐based compounds are not suitable counter electrode (CE) materials for dye‐sensitized solar cells (DSSCs) due to the corrosion of the I?/I3? redox couple in electrolytes. However, Ag2S has potential applications in DSSCs for catalyzing I3? reduction reactions because of its high carrier concentration and tiny solubility product constant. In the present work, CE manufactured from Ag2S nanocrystals ink exhibited efficient electrocatalytic activity in the reduction of I3? to I? in DSSCs. The DSSC consisting of Ag2S CE displayed a higher power conversion efficiency of 8.40 % than that of Pt CE (8.11 %). Moreover, the devices also showed the characteristics of fast activity onset, high multiple start/stop capability and good irradiated stability. The simple composition, easy preparation, stable chemical property, and good catalytic performance make the developed Ag2S CE as a promising alternative to Pt CE in DSSCs.  相似文献   

3.
By means of density functional theory calculations, the adsorption process of I2 at Pt (111) surface in dye-sensitized solar cells (DSSCs) has been investigated. The obtained adsorption energies and stable structures depending on the adsorption sites of the Pt surface are in good agreement with experimental values. Our results show that the dissociative chemisorption and the non-dissociative chemisorption are competitive for the adsorption of I2 on the Pt surface, and the dissociative pathway is more favored in energy. This study is expected to enrich the understanding on the origin of the excellent heterogeneous catalytic performance of Pt for triiodide reduction and the complex iodine chemistry in DSSCs. Understanding of this adsorption mechanism is helpful for rational screening for redox couple and the Pt-free alternative counter electrode materials.  相似文献   

4.
Podlike nitrogen‐doped carbon nanotubes encapsulating FeNi alloy nanoparticles (Pod(N)‐FeNi) were prepared by the direct pyrolysis of organometallic precursors. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements revealed their excellent electrocatalytic activities in the I?/I3? redox reaction of dye‐sensitized solar cells (DSSCs). This is suggested to arise from the modification of the surface electronic properties of the carbon by the encapsulated metal alloy nanoparticles (NPs). Sequential scanning with EIS and CV further showed the high electrochemical stability of the Pod(N)‐FeNi composite. DSSCs with Pod(N)‐FeNi as the counter electrode (CE) presented a power conversion efficiency of 8.82 %, which is superior to that of the control device with sputtered Pt as the CE. The Pod(N)‐FeNi composite thus shows promise as an environmentally friendly, low‐cost, and highly efficient CE material for DSSCs.  相似文献   

5.
Understanding the impact of the defects/defect density of electrocatalysts on the activity in the triiodide (I3?) reduction reaction of dye‐sensitized solar cells (DSSCs) is indispensable for the design and construction of high‐efficiency counter electrodes (CEs). Active‐site‐enriched selenium‐doped graphene (SeG) was crafted by ball‐milling followed by high‐temperature annealing to yield abundant edge sites and fully activated basal planes. The density of defects within SeG can be tuned by adjusting the annealing temperature. The sample synthesized at an annealing temperature of 900 °C exhibited a superior response to the I3? reduction with a high conversion efficiency of 8.42 %, outperforming the Pt reference (7.88 %). Improved stability is also observed. DFT calculations showed the high catalytic activity of SeG over pure graphene is a result of the reduced ionization energy owing to incorporation of Se species, facilitating electron transfer at the electrode–electrolyte interface.  相似文献   

6.
Low‐cost transparent counter electrodes (CEs) for efficient dye‐sensitized solar cells (DSSCs) are prepared by using nanohybrids of carbon nanotube (CNT)‐supported platinum nanoparticles as highly active catalysts. The nanohybrids, synthesized by an ionic‐liquid‐assisted sonochemical method, are directly deposited on either rigid glass or flexible plastic substrates by a facile electrospray method for operation as CEs. Their electrochemical performances are examined by cyclic voltammetry, current density–voltage characteristics, and electrochemical impedance spectroscopy (EIS) measurements. The CNT/Pt hybrid films exhibit high electrocatalytic activity for I?/I3? with a weak dependence on film thickness. A transparent CNT/Pt hybrid CE film about 100 nm thick with a transparency of about 70 % (at 550 nm) can result in a high power conversion efficiency (η) of over 8.5 %, which is comparable to that of pyrolysis platinum‐based DSSCs, but lower cost. Furthermore, DSSC based on flexible CNT/Pt hybrid CE using indium‐doped tin oxide‐coated polyethylene terephthalate as the substrate also exhibits η=8.43 % with Jsc=16.85 mA cm?2, Voc=780 mV, and FF=0.64, and this shows great potential in developing highly efficient flexible DSSCs.  相似文献   

7.
We describe the preparation and properties of bilayers of graphene- and multi-walled carbon nanotubes (MWCNTs) as an alternative to conventionally used platinum-based counter electrode for dye-sensitized solar cells (DSSC). The counter electrodes were prepared by a simple and easy-to-implement double self-assembly process. The preparation allows for controlling the surface roughness of electrode in a layer-by-layer deposition. Annealing under N2 atmosphere improves the electrode's conductivity and the catalytic activity of graphene and MWCNTs to reduce the I3 species within the electrolyte of the DSSC. The performance of different counter-electrodes is compared for ZnO photoanode-based DSSCs. Bilayer electrodes show higher power conversion efficiencies than monolayer graphene electrodes or monolayer MWCNTs electrodes. The bilayer graphene (bottom)/MWCNTs (top) counter electrode-based DSSC exhibits a maximum power conversion efficiency of 4.1 % exceeding the efficiency of a reference DSSC with a thin film platinum counter electrode (efficiency of 3.4 %). In addition, the double self-assembled counter electrodes are mechanically stable, which enables their recycling for DSSCs fabrication without significant loss of the solar cell performance.  相似文献   

8.
A porous graphitic carbon nitride (g‐C3N4)/graphene composite was prepared by a simple hydrothermal method and explored as the counter electrode of dye‐sensitized solar cells (DSCs). The obtained g‐C3N4/graphene composite was characterized by XRD, SEM, TEM, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. The results show that incorporating graphene nanosheets into g‐C3N4 forms a three‐dimensional architecture with a high surface area, porous structure, efficient electron‐transport network, and fast charge‐transfer kinetics at the g‐C3N4/graphene interfaces. These properties result in more electrocatalytic active sites and facilitate electrolyte diffusion and electron transport in the porous framework. As a result, the as‐prepared porous g‐C3N4/graphene composite exhibits an excellent electrocatalytic activity. In I?/I3? redox electrolyte, the charge‐transfer resistance of the porous g‐C3N4/graphene composite electrode is 1.8 Ω cm2, which is much lower than those of individual g‐C3N4 (70.1 Ω cm2) and graphene (32.4 Ω cm2) electrodes. This enhanced electrocatalytic performance is beneficial for improving the photovoltaic performance of DSCs. By employing the porous g‐C3N4/graphene composite as the counter electrode, the DSC achieves a conversion efficiency of 7.13 %. This efficiency is comparable to 7.37 % for a cell with a platinum counter electrode.  相似文献   

9.
In this study, a newly synthesized macrocyclic copper complex, [Cu(C10H20N8)(C4H8N4)](BF4)2, was used for a reaction with graphene oxide. Macrocyclic copper complex/graphene‐based composite materials were prepared and applied to the counter electrodes (CEs) of dye‐sensitized solar cells (DSSCs). As the level of the macrocyclic copper complex increased, the catalytic sites on the surface of the CE increased. The results showed that the device efficiency of the composite GO/Cu (1:10) CE was 7.61%, which was better than that of the Platinum (Pt) CE (7.04%). The device efficiency of the DSSC was enhanced effectively because the electrocatalytic activity of the CE was enhanced, and the interface impedance of the device was reduced. Therefore, the macrocyclic copper complex/graphene‐based composite materials may have the potential to replace traditional Pt to increase efficiency and reduce the fabrication cost of DSSCs.  相似文献   

10.
采用简易溶剂热法合成直径为150-250 nm的Cu2SnSe3纳米颗粒.以Cu2SnSe3"墨水"为前驱体采用滴落涂布法在掺氟二氧化锡基板上沉积Cu2SnSe3薄膜作为染料敏化太阳能电池(DSSC)对电极.利用场发射扫描电镜(FESEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、能谱仪(EDS)等对Cu2SnSe3纳米颗粒的形貌、结构和组成进行表征.结果表明:产物纯净无杂项且符合化学计量比.以Cu2SnSe3为对电极的DSSC转化效率为7.75%,与铂对电极DSSC效率相当(7.21%).研究表明,DSSC的光电流密度和影响因子与Cu2SnSe3薄膜厚度密切相关,这是由于不同厚度的Cu2SnSe3薄膜作对电极所对应的催化位置数目和电阻值不同.电化学阻抗谱研究说明,Cu2SnSe3因具有类似铂良好的电催化性能而适合用作染料敏化太阳能电池对电极材料.本文以Cu2SnSe3代替贵金属铂,提供了一种廉价制备高效染料敏化太阳能电池对电极的新方法.  相似文献   

11.
In recent years dye‐sensitized solar cells (DSSCs) have emerged as one of the alternatives for the global energy crisis. DSSCs have achieved a certified efficiency of >11% by using the I?/I3? redox couple. In order to commercialize the technology almost all components of the device have to be improved. Among the various components of DSSCs, the redox couple that regenerates the oxidized sensitizer plays a crucial role in achieving high efficiency and durability of the cell. However, the I?/I3? redox couple has certain limitations such as the absorption of triiodide up to 430 nm and the volatile nature of iodine, which also corrodes the silver‐based current collectors. These limitations are obstructing the commercialization of this technology. For this reason, one has to identify alternative redox couples. In this regard, the Co(II/III) redox couple is found to be the best alternative to the existing I?/I3? redox couple. Recently, DSSC test cell efficiency has risen up to 13% by using the cobalt redox couple. This review emphasizes the recent development of Co(II/III) redox couples for DSSC applications.  相似文献   

12.
With a facile electrophoretic deposition and chemical bath process, CoS nanoparticles have been uniformly dispersed on the surface of the functionalized graphene nanosheets (FGNS). The composite was employed as a counter electrode of dye‐sensitized solar cells (DSSCs), which yielded a power conversion efficiency of 5.54 %. It is found that this efficiency is higher than those of DSSCs based on the non‐uniform CoS nanoparticles on FGNS (4.45 %) and built on the naked CoS nanoparticles (4.79 %). The achieved efficiency of our cost‐effective DSSC is also comparable to that of noble metal Pt‐based DSSC (5.90 %). Our studies have revealed that both the exceptional electrical conductivity of the FGNS and the excellent catalytic activity of the CoS nanoparticles improve the conversion efficiency of the uniformly FGNS‐CoS composite counter electrode. The electrochemical impedance spectra, cyclic voltammetry, and Tafel polarization have evidenced the best catalytic activity and the fastest electron transport. Additionally, the dispersion condition of CoS nanoparticles on FGNS plays an important role for catalytic reduction of I3?.  相似文献   

13.
通过简单的原位化学合成法结合离子交换法制备了Cu修饰氮掺杂碳(Cu-N-C)和Fe/Cu修饰氮掺杂碳纳米管(Fe/Cu-N-C/CNT),并系统评估了2种催化剂作为染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)对电极在I3-/I-体系中的电化学特性和光伏性能。采用X射线衍射(XRD)、拉曼(Raman)、X射线光电子能谱(XPS)和场发射扫描电镜(FESEM)对合成的催化剂进行组分和形貌表征。结果表明:纳米管状的Fe/Cu-N-C/CNT的石墨化程度比纳米颗粒状的Cu-N-C更高,更有利于I3-还原反应中电荷的传输。光伏性能测试结果表明:基于Fe/Cu-N-C/CNT对电极的DSSCs的光电能量转换效率(power conversion efficiency,PCE)达到7.55%,高于相同测试条件下Cu-N-C(6.99%)和Pt(6.76%)对电极的PCE。50圈连续循环伏安测试结果表明:Fe/Cu-N-C/CNT催化剂具有比Cu-N-C更好的电化学稳定性。  相似文献   

14.
The ternary iron-group thiospinels of metal diindium sulfides (MIn2S4, M=Fe, Co, Ni) with a vertically aligned nanosheet array structure are fabricated through an in situ solvothermal method on F-doped tin oxide (FTO) substrates, which are employed as one type of platinum (Pt)-free counter electrodes (CEs) in structure-dependent dye-sensitized solar cells (DSSCs). A DSSC assembled with ternary CoIn2S4 CE achieves an photoelectric conversion efficiency (PCE) of 8.83 %, outperforming than that of FeIn2S4 (7.18 %) and NiIn2S4 (8.27 %) CEs under full sunlight illumination (100 mW cm−2, AM 1.5 G), which is also comparable with that of the Pt CE (8.19 %). Putting aside that the interconnected nanosheet array provides fast electron transfer and electrolyte diffusion channels, the highest PCE of CoIn2S4 based DSSC results from its largest specific surface area (144.07 m2 g−1), providing abundant active sites and the largest electron injection efficiency from CE to electrolyte.  相似文献   

15.
Many materials have been tried as the counter electrode (CE) material as a substitute to the noble metal Pt in dye-sensitized solar cells (DSSCs). The CE property is critical to the operation of a DSSC as it catalyzes the reduction of I3- ions and retrieves the electrons from the photoanode. Here we have explored the application of manganese dioxide (MnO2) and copper-doped manganese dioxide (Cu-MnO2) nanoparticles as CE candidates for DSSCs mainly as low-cost alternatives to Pt. A simple hydrothermal method was followed to synthesize α-MnO2 and Cu-MnO2 nanoparticles at a temperature of 140 °C for 14 h. The nanoparticles were characterized to prove its electrocatalytic abilities for DSSCs. DSSC devices fabricated with 10 wt% Cu-MnO2 as CE showed the best VOC of 781 mV, ISC of 3.69 mA/cm2, FF of 0.50, and %PCE of 1.7 whereas Pt as CE showed VOC of 780 mV, ISC of 14.8 mA/cm2, FF of 0.43, and %PCE of 5.83 under 0.85 Sun. The low-cost feature of using Cu-MnO2 is encouraging to further study the factors that can improve the efficiency of DSSCs with alternative CEs to conventional Pt electrodes.  相似文献   

16.
To conquer the bottleneck of sluggish kinetics in cathodic oxygen reduction reaction (ORR) of metal-air batteries, catalysts with dual-active centers have stood out. Here, a “pre-division metal clusters” strategy is firstly conceived to fabricate a N,S-dual doped honeycomb-like carbon matrix inlaid with CoN4 sites and wrapped Co2P nanoclusters as dual-active centers (Co2P/CoN4@NSC-500). A crystalline {CoII 2 } coordination cluster divided by periphery second organic layers is well-designed to realize delocalized dispersion before calcination. The optimal Co2P/CoN4@NSC-500 executes excellent 4e ORR activity surpassing the benchmark Pt/C. Theoretical calculation results reveal that the CoN4 sites and Co2P nanoclusters can synergistically quicken the formation of *OOH on Co sites. The rechargeable Zn-air battery (ZAB) assembled by Co2P/CoN4@NSC-500 delivers ultralong cycling stability over 1742 hours (3484 cycles) under 5 mA cm−2 and can light up a 2.4 V LED bulb for ≈264 hours, evidencing the promising practical application potentials in portable devices.  相似文献   

17.
The ternary iron‐group thiospinels of metal diindium sulfides (MIn2S4, M=Fe, Co, Ni) with a vertically aligned nanosheet array structure are fabricated through an in situ solvothermal method on F‐doped tin oxide (FTO) substrates, which are employed as one type of platinum (Pt)‐free counter electrodes (CEs) in structure‐dependent dye‐sensitized solar cells (DSSCs). A DSSC assembled with ternary CoIn2S4 CE achieves an photoelectric conversion efficiency (PCE) of 8.83 %, outperforming than that of FeIn2S4 (7.18 %) and NiIn2S4 (8.27 %) CEs under full sunlight illumination (100 mW cm−2, AM 1.5 G), which is also comparable with that of the Pt CE (8.19 %). Putting aside that the interconnected nanosheet array provides fast electron transfer and electrolyte diffusion channels, the highest PCE of CoIn2S4 based DSSC results from its largest specific surface area (144.07 m2 g−1), providing abundant active sites and the largest electron injection efficiency from CE to electrolyte.  相似文献   

18.
Electrontransfer Barriers in CoN63+/CoN62+ Couples as a Function of the Ligand Structure. Correlations between the Structure and Redoxreactivity The redox-reactivity of a series of CoN63+ complexes containing two saturated triamine ligands (open-chain and cyclic) has been systematically investigated. The perchlorate salts of 22 new amine complexes of the type [CoL2]3+ and [CoLL′]3+, where L and L′ represent different coordinated triamines, have been synthesized, their electronic spectra have been recorded and the redoxpotentials of CoN63+/2+ couples have been measured by use of cyclic voltammetry. The crystal structures of [Co(tacn)(dien)] I3, [Co(tacn)(etdien)] I3. H2O, and of [Co(budien)2]Br3. H2O (tacn = 1, 4, 7-triaza-cyclononane, dien = diethylenetriamine, etdien = N-(2-aminoethyl)-N-(ethyl)-1, 2-ethanediamine, budien = N-(2-aminoethyl)-N-(n-butyl)-1, 2-ethanediamine) have been determined by single crystal X-ray crystallography. The kinetics of the outer-sphere reductions of 14 CoN63+ complexes by [V(OH2)6]2+ have been measured and the electron transfer self-exchange rate constants of CoN63+/2+ couples have been calculated by use of the Marcus equation. Structure-redox-activity correlations are discussed in the frame of the semiclassical Marcus-Sutin model.  相似文献   

19.
High-performance counter electrodes for dye-sensitized solar cells (DSSCs) are fabricated with platinum-nickel oxide (Pt-NiO) nanosheets as catalytic materials. Firstly, the Pt-Ni nanosheets are synthesized via galvanic replacement reaction between pre-synthesized Ni nanosheets and an aqueous H2PtCl6 solution. Secondly, after thermal treatment in air, the Pt-Ni alloys are turned to Pt-NiO nanosheets. The related data of cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization reveal that Pt-NiO counter electrodes show highly catalytic activity and low charge transfer resistance. The DSSC with Pt-NiO counter electrode exhibits power conversion efficiency (PCE) of 8.40 %, which is lower than that of the DSSC containing commercial available Pt counter electrode (9.15 %) under full sunlight illumination (100 mW cm?2, AM1.5G). However, owing to the extremely high transparency of Pt-NiO counter electrode, when putting an Ag mirror behind the back side of the DSSC, the reflected light can bring great enhanced PCE (11.27 %).  相似文献   

20.
Lithium metal has been considered as the most promising anode electrode for substantially improving the energy density of next‐generation energy storage devices. However, uncontrollable lithium dendrite growth, an unstable solid electrolyte interface (SEI), and infinite volume variation severely shortens its service lifespan and causes safety hazards, thus hindering the practical application of lithium metal electrodes. Here, carbon fiber film (CFF) modified by lithiophilic Co3O4 nanowires (denoted as Co3O4 Nws) was proposed as a matrix for prestoring lithium metal through a thermal infusion method. The homogeneous needle‐like Co3O4 nanowires can effectively promote molten lithium to infiltrate into the CFF skeleton. The post‐formed Co?Li2O nanowires produced by the reaction of Co3O4 Nws and molten lithium can homogeneously distribute lithium ions flux and efficaciously increase the adsorption energy with lithium ions proved by density functional theory (DFT) calculation, boosting a uniform lithium deposition without dendrite growth. Therefore, the obtained composite anode (denoted as CFF/Co?Li2O@Li) exhibits superior electrochemical performance with high stripping/plating capacities of 3 mAh cm?2 and 5 mAh cm?2 over long‐term cycles in symmetrical batteries. Moreover, in comparison with bare lithium anode, superior Coulombic efficiencies coupled with copper collector and full battery behaviors paired with LiFePO4 cathode are achieved when CFF/Co?Li2O@Li composite anode was employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号