首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic positions of the dimetallic cluster inside the mid‐sized spherical cages of C80–C82 have been seldom studied, despite the high abundance of M2@C2n (2n=80, 82) species among various endohedral metallofullerenes. Herein, using crystallographic methods, we first unambiguously map the metal positions for both Ce2@D5h‐C80 and Ce2@Ih‐C80, showing how the symmetry or geometrical change in cage structure can influence the motional behavior of the cluster. Inside the D5h cage, the primary cerium sites have been identified along a cage belt of the contiguous hexagons, which suggests the significant influence of such a cage motif on endohedral cluster motion. Further analysis revealed a distorted D5h cage owing to the “punch‐out” effect of cerium atoms. The consequence is the presence of two localized electrostatic potential minima inside the cage of (D5h‐C80)6?, thus reflecting the primary ionic cerium–cage interaction. In contrast, a different motional behavior of Ce2 cluster was observed inside the Ih cage. With the major cerium sites, the molecule of Ce2@Ih‐C80 presented an approximate D2h configuration. With the combined theoretical study, we propose that the additional unidentified influence of NiII(OEP) (OEP=octaethylporphyrin) might be also relevant for the location of cerium sites inside the Ih cage.  相似文献   

2.
Interactions between alkali‐metal azides and metal–organic framework (MOF) derivatives, namely, the first and third members of the isoreticular MOF (IRMOF) family, IRMOF‐1 and IRMOF‐3, are studied within the density functional theory (DFT) paradigm. The investigations take into account different models of the selected IRMOFs. The mutual influence between the alkali‐metal azides and the π rings or Zn centers of the involved MOF derivatives are studied by considering the interactions both of the alkali‐metal cations with model aromatic centers and of the alkali‐metal azides with distinct sites of differently sized models of IRMOF‐1 and IRMOF‐3. Several exchange and correlation functionals are employed to calculate the corresponding interaction energies. Remarkably, it is found that, with increasing alkali‐metal atom size, the latter decrease for cations interacting with the π‐ring systems and increase for the azides interacting with the MOF fragments. The opposite behavior is explained by stabilization effects on the azide moieties and determined by the Zn atoms, which constitute the inorganic vertices of the IRMOF species. Larger cations can, in fact, coordinate more efficiently to both the aromatic center and the azide anion, and thus stabilizing bridging arrangements of the azide between one alkali‐metal and two Zn atoms in an η2 coordination mode are more favored.  相似文献   

3.
The dinuclear Pt–Au complex [(CNC)(PPh3)Pt Au(PPh3)](ClO4) ( 2 ) (CNC=2,6‐diphenylpyridinate) was prepared. Its crystal structure shows a rare metal–metal bonding situation, with very short Pt–Au and Au–Cipso(CNC) distances and dissimilar Pt–Cipso(CNC) bonds. Multinuclear NMR spectra of 2 show the persistence of the Pt–Au bond in solution and the occurrence of unusual fluxional behavior involving the [PtII] and [AuI] metal fragments. The [PtII]??? [AuI] interaction has been thoroughly studied by means of DFT calculations. The observed bonding situation in 2 can be regarded as a model for an intermediate in a transmetalation process.  相似文献   

4.
The first organometallic BOPHY (BOPHY=bis(difluoroboron)‐1,2‐bis{(pyrrol‐2‐yl)methylene}hydrazine) containing two ferrocene substituents was prepared through a Knoevenagel condensation between tetramethyl substituted BOPHY and ferrocene carboxaldehyde. An unprecedentedly strong long‐range (≈17.2 Å) metal–metal coupling in this new complex was investigated using electrochemical, spectroelectrochemical, and chemical oxidation methods. Electrochemical data is indicative of a 200 mV separation between the first and the second ferrocene‐centered oxidation processes. Formation of the mixed‐valence states and appearance and disappearance of two NIR bands were observed during stepwise oxidation of the first organometallic BOPHY. The electronic structure and the nature of the excited states in this new chromophore were studied by DFT and TDDFT calculations.  相似文献   

5.
The chemical functionalization of endohedral metallofullerenes (EMFs) has aroused considerable interest due to the possibility of synthesizing new species with potential applications in materials science and medicine. Experimental and theoretical studies on the reactivity of endohedral metallofullerenes are scarce. To improve our understanding of the endohedral metallofullerene reactivity, we have systematically studied with DFT methods the Diels–Alder cycloaddition between s‐cis‐1,3‐butadiene and practically all X@Ih‐C80 EMFs synthesized to date: X=Sc3N, Lu3N, Y3N, La2, Y3, Sc3C2, Sc4C2, Sc3CH, Sc3NC, Sc4O2 and Sc4O3. We have studied both the thermodynamic and kinetic regioselectivity, taking into account the free rotation of the metallic cluster inside the fullerene. This systematic study has been made possible through the use of the frozen cage model (FCM), a computationally cheap approach to accurately predicting the exohedral regioselectivity of cycloaddition reactions in EMFs. Our results show that the EMFs are less reactive than the hollow Ih‐C80 cage. Except for the Y3 cluster, the additions occur predominantly at the [5,6] bond. In many cases, however, a mixture of the two possible regioisomers is predicted. In general, [6,6] addition is favored in EMFs that have a larger charge transfer from the metal cluster to the cage or a voluminous metal cluster inside. The present guide represents the first complete and exhaustive investigation of the reactivity of Ih‐C80‐based EMFs.  相似文献   

6.
7.
Three unusual three‐dimensional (3D) tetrazine chromophore‐based metal–organic frameworks (MOFs) {(Et4N)[WS4Cu3(CN)2(4,4′‐pytz)0.5]}n ( 1 ), {[MoS4Cu4(CN)2(4,4′‐pytz)2] ? CH2Cl2}n ( 2 ), and {[WS4Cu3(4,4′‐pytz)3] ? [N(CN)2]}n ( 3 ; 4,4′‐pytz=3,6‐bis(4‐pyridyl)tetrazine) have been synthesized and characterized by using FTIR and UV/Vis spectroscopy, elemental analysis, powder X‐ray diffraction, gel permeation chromatography, steady‐state fluorescence, and thermogravimetric analysis; their identities were confirmed by single‐crystal X‐ray diffraction studies. MOF 1 possesses the first five‐connected M/S/Cu (M=Mo, W) framework with an unusual 3D (44?66) topology constructed from T‐shaped [WS4Cu3]+ clusters as nodes and single CN?/4,4′‐pytz bridges as linkers. MOF 2 features a novel 3D MOF structure with (420?68) topology, in which the bridging 4,4′‐pytz ligands exhibit unique distorted arch structures. MOF 3 displays the first 3D MOF structure based on flywheel‐shaped [WS4Cu3]+ clusters with a non‐interpenetrating honeycomb‐like framework and a heavily distorted “ACS” topology. Steady‐state fluorescence studies of 1 – 3 reveal significant fluorescence emissions. The nonlinear optical (NLO) properties of 1 – 3 were investigated by using a Z‐scan technique with 5 ns pulses at λ=532 nm. The Z‐scan experimental results show that the π‐delocalizable tetrazine‐based 4,4′‐pytz ligands contribute to the strong third‐order NLO properties exhibited by 1 – 3 . Time‐dependent density functional theory studies afforded insight into the electronic transitions and spectral characterization of these functionalized NLO molecular materials.  相似文献   

8.
9.
Density functional theory has been used to examine the dimetallocene‐like dicycloheptatrienyl dimetal compounds of the second‐row transition metals (C7H7)2M2 (M = Ru, Tc, Mo, Nb, Zr). The lowest energy (C7H7)2Mo2 structure is a coaxial structure with terminal η7? C7H7 rings, whereas the lowest energy (C7H7)2M2 structures (M = Ru, Tc, Nb, Zr) are perpendicular structures with bridging η44? C7H7 rings except for the perpendicular (η43? C7H7)2Ru2 structure. The metal–metal bond orders in the (C7H7)2M2 structures (M = Ru, Tc, Mo, Nb), as determined by analysis of their frontier molecular orbitals, suggest preferred 16‐ rather than 18‐electron configurations for the central metal atoms. Thus, in the coaxial (η7? C7H7)2M2 structures the formal bond orders are two for M = Tc and three for M = Mo. For the perpendicular structures both (η43? C7H7)2Ru2 and (η44? C7H7)2Tc2 have 16‐electron configurations with metal–metal single bonds owing to the different modes of bonding of the bridging C7H7 rings in the two structures. For the (C7H7)2Zr2 system the perpendicular structure has a formal Zr?Zr double bond and the coaxial structure has a very long (~3.5 Å) Zr? Zr bond indicating only 12‐ to 14‐electron configurations for the zirconium atoms.  相似文献   

10.
11.
The two regioisomers of endohedral pyrrolidinodimetallofullerenes M2@Ih‐C80(CH2)2NTrt (M=La, Ce; Trt=trityl) were synthesized, isolated, and characterized. X‐ray crystallographic analyses of [6,6]‐La2@Ih‐C80(CH2)2NTrt and [6,6]‐Ce2@Ih‐C80(CH2)2NTrt revealed that the encapsulated metal atoms are located at the slantwise positions on the mirror plane that parallels the pyrrolidine ring. Paramagnetic NMR analyses of [6,6]‐ and [5,6]‐Ce2@Ih‐C80(CH2)2NTrt were also carried out to clarify the metal positions. As for the [6,6]‐adduct, the metal positions obtained by paramagnetic NMR analysis agree well with the X‐ray structure. In contrast, paramagnetic NMR analysis of the [5,6]‐adduct showed that the two Ce atoms are collinear with the pyrrolidine ring. We also compared the observed paramagnetic effects of the pyrrolidinodimetallofullerenes with those of other cerium‐encapsulating fullerene derivatives such as bis‐silylated Ce2@Ih‐C80 and a carbene adduct of Ce2@Ih‐C80. We found that the metal positions can be explained by the electrostatic potential maps of the corresponding [6,6]‐ and [5,6]‐adducts of [Ih‐C80(CH2)2NTrt]6?. These findings clearly show that metal positions inside fullerene cages can be controlled by means of the addition positions of the addends. In addition, the radical anions of the pyrrolidinodimetallofullerenes were prepared by bulk controlled‐potential electrolysis and characterized by X‐band EPR spectral study.  相似文献   

12.
The study of the aggregation of small molecules in solution induced by metallophilic interactions has been traditionally performed by spectroscopic methods through identification of chemical changes in the system. Herein we demonstrate the use of SAXS (small‐angle X‐ray scattering) to identify structures in solution, taking advantage of the excellent scattering intensity of heavy metals which have undergone association by metallophilic interactions. An analysis of the close relationship between solid‐state and solution arrangements of a dynamic [Ag2(bisNHC)2]2+ (NHC=N‐heterocyclic carbene) system, and how they are complementary to each other, is reported.  相似文献   

13.
Understanding photoinduced charge separation in fullerene‐based dye‐sensitized solar cells is crucial for the development of photovoltaic devices. We investigate here how the driving force of the charge separation process in conjugates of M@C80 (M=Sc3N, Sc3CH, Sc3NC, Sc4O2, and Sc4O3) with triphenylamine (TPA) depends on the nature of the metal cluster. Both singlet and triplet excited‐state electron‐transfer reactions are considered. These results based on TD‐DFT calculations demonstrate that the driving force of charge separation in TPA‐M@C80 can be tuned well by varying the structure of the metal cluster encapsulated inside the fullerene cage.  相似文献   

14.
Metal‐free intermolecular Huisgen cycloadditions using nonactivated internal alkynes have been successfully performed in neat glycerol, both under thermal and microwave dielectric heating. In sharp contrast, no reaction occurs in other protic solvents, such as water, ethanol, or diols. DFT calculations have shown that the BnN3/glycerol adduct promotes a more important stabilization of the corresponding LUMO than that produced in the analogous BnN3/alcohol adducts, favoring the reactivity with the alkyne in the first case. The presence of copper salts in the medium did not change the reaction pathway (Cu(I) acts as spectator), except for disubstituted silylalkynes, for which desilylation takes place in contrast to the metal‐free system.  相似文献   

15.
16.
Bismetallocenes [Cp2LuReCp2] and [Cp*2LaReCp2] (Cp=cyclopentadienyl; Cp*=pentamethylcyclopentadienyl) were prepared using different synthetic strategies. Salt metathesis—performed in aromatic hydrocarbons to avoid degradation pathways caused by THF—were identified as an attractive alternative to alkane elimination. Although alkane elimination is more attractive in the sense of its less elaborate workup, the rate of the reaction shows a strong dependence on the ionic radius of Ln3+ (Ln=lanthanide) within a given ligand set. Steric hindrance can cause a dramatic decrease in the reaction rate of alkane elimination. In this case, salt metathesis should be considered the better alternative. Covalent bonding interactions between the Ln and transition‐metal (TM) cations has been quantified on the basis of the delocalization index. Its magnitude lies within the range characteristic for bonds between transition metals. Secondary interactions were identified between carbon atoms of the Cp ligand of the transition metal and the Ln cation. Model calculations clearly indicated that the size of these interactions depends on the capability of the TM atom to act as an electron donor (i.e., a Lewis base). The consequences can even be derived from structural details. The observed clear dependency of the Lu?Ru and interfragment Lu?C bonding on the THF coordination of the Lu atom points to a tunable Lewis acidity at the Ln site, which provides a method of significantly influencing the structure and the interfragment bonding.  相似文献   

17.
18.
Reported herein is the structure and the electronic properties of a novel triphenylamine derivative having two phenoxy radicals appended to the amino nitrogen atom. X‐ray single crystal analysis and the magnetic resonance measurements demonstrates the unexpected closed‐shell electronic structure, even at room temperature, of the molecule and two unusual C? N bonds with multiple‐bond character. The theoretical calculations support the experimentally determined molecular geometry with the closed‐shell electronic structure, and predicted a small HOMO–LUMO gap originating from the nonbonding character of the HOMO. The optical and electrochemical measurements show that the molecule has a remarkably small HOMO–LUMO gap compared with its triphenylamine precursor.  相似文献   

19.
The azafullerene Tb2@C79N is found to be a single‐molecule magnet with a high 100‐s blocking temperature of magnetization of 24 K and large coercivity. Tb magnetic moments with an easy‐axis single‐ion magnetic anisotropy are strongly coupled by the unpaired spin of the single‐electron Tb?Tb bond. Relaxation of magnetization in Tb2@C79N below 15 K proceeds via quantum tunneling of magnetization with the characteristic time τQTM=16 462±1230 s. At higher temperature, relaxation follows the Orbach mechanism with a barrier of 757±4 K, corresponding to the excited states, in which one of the Tb spins is flipped.  相似文献   

20.
Herein, a mechanism of stepwise metal‐center exchange for a specific metal–organic framework, namely, [Zn4(dcpp)2(DMF)3(H2O)2]n (H4dcpp=4,5‐bis(4′‐carboxylphenyl)phthalic acid), is disclosed for the first time. The coordination stabilities between the central metal atoms and the ligands as well as the coordination geometry are considered to be dominant factors in this stepwise exchange mechanism. A new magnetic analytical method and a theoretical model confirmed that the exchange mechanism is reasonable. When the metathesis reaction occurs between CuII ions and framework ZnII ions, the magnetic exchange interaction of each pair of CuII centers gradually strengthens with increasing amount of framework CuII ions. By analyzing the changes of coupling constants in the Cu‐exchanged products, it was deduced that Zn4 and Zn3 are initially replaced, and then Zn1 and Zn2 are replaced later. The theoretical calculation further verified that Zn4 is replaced first, Zn3 next, then Zn1 and Zn2 last, and the coordination stability dominates the Cu/Zn exchange process. For the Ni/Zn and Co/Zn exchange processes, besides the coordination stability, the preferred coordination geometry was also considered in the stepwise‐exchange behavior. As NiII and CoII ions especially favor octahedral coordination geometry in oxygen‐ligand fields, NiII ions and CoII ions could only selectively exchange with the octahedral ZnII ions, as was also confirmed by the experimental results. The stepwise metal‐exchange process occurs in a single crystal‐to‐single crystal fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号