首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electron‐deficient small boron rings are unique in their formation of σ‐ and π‐delocalized electron systems as well as the avoidance of “classical” structures with two‐center‐two‐electron (2c,2e) bonds. These rings are tolerant of several skeletal electron numbers, which makes their redox chemistry highly interesting. In the past few decades, a range of stable compounds have been synthesized with various electron numbers in their B3 and B4 cores. The electronic structures were evaluated by quantum‐chemical calculations. On the other hand, the chemistry of these rings is still very much underdeveloped, being generally limited to the protonation and redox reactions of individual systems. The linkage of several B3 and/or B4 ring systems should give compounds with attractive electronic properties, thus leading the way to novel boron‐based materials. By summarizing important experimental and theoretical results, this Review intends to provide the basis for the exploration of the chemistry of these rings and, in particular, their integration into larger molecular architectures.  相似文献   

2.
3.
Oxidation by dioxygen has a rich repertoire of mechanistic intricacies. Herein, we report a hitherto unknown paradigm of dioxygen activation reaction which propagates through a four center two electron (4c–2e) bound species. Using static DFT and ab initio quantum chemical techniques we have unraveled the oxidation pathway for hydrazine and its methylated analogues by dioxygen which involves formation of this unconventional 4c–2e bonded species en route to the oxidation products. Inconvertible evidence in favor of such an unprecedented dioxygen activation route is provided by capturing the events of formation of the 4c–2e species in aqueous phase for hydrazine and its congeners and the experimentally observed products from the respective 4c–2e species, like H2O2 and N2H2, diazene in the case of hydrazine using Car–Parrinello molecular dynamics simulations.  相似文献   

4.
5.
Treatment of meso‐chlorosubporphyrin with potassium hydroxide in DMSO followed by aqueous work up and recrystallization gave a cyclic trimer consisting of meso‐hydroxysubporphyrin units linked between the central boron atoms and meso‐hydroxy groups. Solutions of this trimer are nonfluorescent, but become fluorescent when exposed to acid or base, since hydrolytic cleavage of the axial B? O bonds generates the meso‐hydroxysubporphyrin monomer or its oxyanion. Ring cleavage of the trimer was also effected by reaction with phenylmagnesium bromide to produce meso‐hydroxy‐B‐phenyl subporphyrin, which can be quantitatively oxidized with PbO2 to furnish a subporphyrin meso‐oxy radical as a remarkably stable species as a result of spin delocalization over almost the entire molecule.  相似文献   

6.
Utilizing a cyclic (alkyl)(amino)carbene (CAAC) as a ligand, neutral CAAC‐stabilized radicals containing a boryl functionality could be prepared by reduction of the corresponding haloborane adducts. The radical species with a duryl substituent was fully characterized by single‐crystal X‐ray structural analysis, EPR spectroscopy, and DFT calculations. Compared to known neutral boryl radicals, the isolated radical species showed larger spin density on the boron atom. Furthermore, the compound that was isolated is extraordinarily stable to high temperatures under inert conditions, both in solution and in the solid state. Electrochemical investigations of the radical suggest the possibility to generate a stable formal boryl anion species.  相似文献   

7.
Substitution of the dicarbaundecaborate anion nido‐7,8‐C2B9H12? ( 1 ) by precise hydride abstraction followed by nucleophilic attack usually leads to symmetric products 10‐R‐nido‐7,8‐C2B9H11. However, thioacetamide (MeC(S)NH2) as nucleophile and acetone/AlCl3 as hydride abstractor gave asymmetric 9‐[MeC(NHiPr)S]‐nido‐7,8‐C2B9H11 ( 2 ), whereas N,N‐dimethylthioacetamide (MeC(S)NMe2) gave the expected symmetric 10‐[MeC(NMe2)S]‐nido‐7,8‐C2B9H11 ( 4 ). For the formation of 2 , acetone and thioacetamide are assumed to give the intermediate MeC(S)N(CMe2) ( 3 ), which then attacks 1 with formation of 2 . Similarly, reaction of acetyliminium chloride [MeC(O)NH(CPh2)]Cl ( 5 ) with 1 in THF gave a mixture of 9‐ and 10‐substituted [MeC(NHCHPh2)O]‐nido‐7,8‐C2B9H11 ( 6 and 7 , respectively). These reactions are the first examples in which compounds (here heterodienes) that unite the functionalities of both hydride acceptor and nucleophilic site react with 1 in a bimolecular fashion. Furthermore, the analogous reaction of 1 and 5 (in an equilibrium mixture with acetyl chloride and benzophenone imine) in MeCN afforded 10‐[MeC(NCPh2)NH]‐nido‐7,8‐C2B9H11 ( 8 ) and MeC(O)NHCHPh2 ( 9 ).  相似文献   

8.
Reaction of a ditriflatodiborane compound with the Lewis acids AlCl3 or GaCl3 leads to abstraction of the two triflate substituents and dimerization of the resulting dicationic diborane to give a σ‐aromatic tetracationic tetraborane with a planar, rhomboid B4 core. The compound exhibits four skeletal σ‐electrons involved in two (3c,2e) bonds and represents the first stable fourfold base‐stabilized [B4H4]4+ analogue. The product is isolated from the reaction mixture in the form of bright orange crystals that display fluorescence. Further analysis shows that the new tetraborane(4) is stabilized in the solid state by the lattice energy. It exhibits an extremely high electron affinity and is only stable in solution after one‐electron reduction to the radical cation.  相似文献   

9.
10.
11.
B(C6F5)2‐containing boryldienes 4 underwent the addition of two molar equivalents of TEMPO to give N,O‐bonded four‐membered heterocyclic products 7 . The reaction is a metal‐free example of the generation of reactive nitrogen‐centered TEMPO radical derivatives, in this case by the addition of TEMPO to the borane, followed by carbon–nitrogen bond formation and subsequent trapping of the resulting allyl radical by the second equivalent of TEMPO.  相似文献   

12.
Pd and Ni dimers supported by PSiP ligands in which two hypervalent five‐coordinate Si atoms bridge the two metal centers are reported. Crystallographic characterization revealed a rare square‐pyramidal geometry at Si and an unusual asymmetric M2Si2 core (M=Pd or Ni). DFT calculations showed that the unusual structure of the core is also found in a model in which the phosphine and Si centers are not part of a pincer group, thus indicating that the observed geometry is not imposed by the PSiP ligand. NBO analysis showed that an asymmetric four‐center two‐electron (4c‐2e) bond stabilizes the hypervalent Si atoms in the M2Si2 core.  相似文献   

13.
A luminescent open‐shell organic radical with high chemical stability was synthesized. (3,5‐Dichloro‐4‐pyridyl)bis(2,4,6‐trichlorophenyl)methyl radical (PyBTM) was photoluminescent under various conditions. Fluorescence quantum yields of 0.03, 0.26, and 0.81 (the highest value reported for a stable organic radical) were obtained in chloroform, in poly(methyl methacrylate) film at room temperature, and in an EPA matrix (diethyl ether:isopentane:ethanol) at 77 K, respectively. The photostability of PyBTM is up to 115 times higher than that of the tris(2,4,6‐trichlorophenyl)methyl radical, a previously reported luminescent radical. The pyridine moiety of PyBTM acts as a proton coordination site, thereby allowing for control of the electronic and optical properties of the radical by protonation and deprotonation.  相似文献   

14.
An electron‐rich monovalent boron compound is used as a Lewis base to prepare adducts with Group 13 Lewis acids using both its boron and nitrogen sites. The hard Lewis acid AlCl3 binds through a nitrogen atom of the Lewis base, while softer Lewis acids GaX3 (Cl, Br, I) bind at the boron atom. The latter are the first noncluster Lewis adducts between a boron‐centered Lewis base and a main‐group Lewis acid.  相似文献   

15.
《中国化学》2018,36(7):573-586
Synthesis of stable main‐group element‐based radicals represents one of the most interesting topics in contemporary organometallic chemistry, because of their vital roles in organic, inorganic and biological chemistry as well as materials science. However, the access of stable main‐group element‐based radicals is highly challenging owing to the lack of energetically accessible orbitals in the main‐group elements. During the last decades, several synthetic strategies have been developed in obtaining these reactive species. Among them, utilizing the sterically demanding substituents and π‐conjugated ligands has proven to be an effective approach. Weakly coordinating ions (WCAs) have also been found to be exceptionally practical in synthesizing radical cations of main‐group elements. By introducing these stabilization methods, we have successfully prepared a variety of radical ions of p‐block elements in the crystalline forms, and investigated their properties by different experimental and quantum chemical calculation methods. According to the investigations, magnetic stability was observed, resulting from the intramolecular electron‐exchange interaction. Furthermore, we also found that the singlet‐triplet energy gaps of the bis(triarylamine) diradical dications can be tunable by varying the temperature. These investigations open new avenues of the main‐group element‐based radicals for a large variety of applications.  相似文献   

16.
A tetravalent uranium compound with a radical azobenzene ligand, namely, [{(SiMe2NPh)3‐tacn}UIV2‐N2Ph2.)] ( 2 ), was obtained by one‐electron reduction of azobenzene by the trivalent uranium compound [UIII{(SiMe2NPh)3‐tacn}] ( 1 ). Compound 2 was characterized by single‐crystal X‐ray diffraction and 1H NMR, IR, and UV/Vis/NIR spectroscopy. The magnetic properties of 2 and precursor 1 were studied by static magnetization and ac susceptibility measurements, which for the former revealed single‐molecule magnet behaviour for the first time in a mononuclear UIV compound, whereas trivalent uranium compound 1 does not exhibit slow relaxation of the magnetization at low temperatures. A first approximation to the magnetic behaviour of these compounds was attempted by combining an effective electrostatic model with a phenomenological approach using the full single‐ion Hamiltonian.  相似文献   

17.
Herein, we disclose a strategy for the activation of N‐(acyloxy)phthalimides towards photoinduced electron transfer through hydrogen bonding. This activation mode enables efficient access to C(sp3)‐centered radicals upon decarboxylation from bench‐stable and readily available substrates. Moreover, we demonstrate that the formed alkyl radicals can be successfully employed in a novel redox‐neutral method for constructing sp3−sp3 bonds across styrene moieties that gives straightforward access to complex alcohol and ether scaffolds.  相似文献   

18.
The halogen and hydrogen bonding complexes between 2,2,6,6-tetramethylpiperidine-noxyl and trihalomethanes (CHX3, X=Cl, Br, I) are simulated by computational quantum chem-istry. The molecular electrostatic potentials, geometrical parameters and interaction energy of halogen and hydrogen bonding complexes combined with natural bond orbital analysis are obtained. The results indicate that both halogen and hydrogen bonding interactions obey the order Cl相似文献   

19.
Despite the synthesis of a boryl anion by Yamashita et al. in 2006, compounds that show boron‐centered nucleophilicity are still rare and sought‐after synthetic goals. A number of such boryl anions have since been prepared, two of which were reported to react with methyl iodide in apparent nucleophilic substitution reactions. One of these, a borolyl anion based on the borole framework, has now been found to display single‐electron‐transfer (SET) reactivity in its reaction with triorganotetrel halides, which was confirmed by the isolation of the first neutral borole‐based radical. The radical was characterized by elemental analysis, single‐crystal X‐ray crystallography, and EPR spectroscopy, and has implications for the understanding of boron‐based nucleophilic behavior and the emergent role of boron radicals in synthesis. This radical reactivity was also exploited in the synthesis of compounds with rare B? Sn and B? Pb bonds, the latter of which was the first isolated and structurally characterized compound with a “noncluster” B? Pb bond.  相似文献   

20.
A gold(I) complex containing an open‐shell luminescent (3,5‐dichloro‐4‐pyridyl)bis(2,4,6‐trichlorophenyl)methyl (PyBTM) radical was prepared. The complex showed fluorescence centered mainly on the coordinated PyBTM ligand. The photophysical and photochemical properties were positively modulated upon coordination to AuI; the photoluminescence quantum yield, fluorescence wavelength, and the stability in the photoexcited state all increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号