首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fracture behavior of a dynamically loaded edge crack in a brittle-ductile layered material, as a function of applied loading rate, was experimentally investigated. Layered specimens were prepared by sandwiching a thin layer of ductile aluminum between two thick layers of brittle Homalite-100. The layers were bonded using Loctite Depend 330 adhesive, and a naturally sharp edge crack was introduced in one of the Homalite-100 layers. These single-edge notched specimens were loaded in dynamic three-point bending using a modified Hopkinson bar. The fracture process was imaged in real time using dynamic photoelasticity in conjunction with digital high-speed photography, and the applied load and load-point displacement histories were determined from the strain signals recorded at two locations on the Hopkinson bar. The results of this study indicated two distinct mechanisms of dynamic failure, depending on the applied loading rate. At lower loading rates, the starter crack arrested on reaching the aluminum layer and then caused delamination along the aluminum–Homalite interface. On the contrary, as the loading rate was increased, interfacial delamination was followed by crack re-initiation in the Homalite layer opposite to the initial starter crack. It was determined that the times required for crack initiation, delamination and crack re-initiation decreased as the loading rate was increased. However, it was also observed that the applied load values associated with each event increased with increasing loading rate. These observations indicate that both the dynamic failure process and plausibly the failure mode transition are affected by the rate-dependent properties of Homalite, aluminum and the interfacial bond. Finally, based on the measured peak loads and the observed failure mechanisms it was concluded that the incorporation of a thin ductile reinforcement layer can increase both the overall fracture toughness and strength of a nominally brittle material.  相似文献   

2.
《Composite Interfaces》2013,20(4):347-355
The fracture properties of particulate-reinforced metal matrix composites (MMCs) are influenced by several factors, such as particle size, inter-particle spacing and volume fraction of the reinforcement. In addition, complex microstructural mechanisms, such as precipitation hardening induced by heat treatment processing, affect the fracture toughness of MMCs. Precipitates that are formed at the particle/matrix interface region, lead to improvement of the interfacial strength, and hence enhancement of the macroscopic strength properties of the composite material. In this paper, a micro-mechanics model, based on thermodynamics principles, is proposed to determine the fracture strength of the interface at a segregated state in MMCs. This model uses energy considerations to express the fracture toughness of the interface in terms of interfacial critical strain energy release rate and elastic modulus. The interfacial fracture toughness is further expressed as a function of the macroscopic fracture toughness and mechanical properties of the composite, using a toughening mechanism model based on crack deflection and interface cracking. Mechanical testing is also performed to obtain macroscopic data, such as the fracture strength, elastic modulus and fracture toughness of the composite, which are used as input to the model. Based on the experimental data and the analysis, the interfacial strength is determined for SiC particle-reinforced aluminium matrix composites subjected to different heat treatment processing conditions.  相似文献   

3.
Dynamic interactions between the propagating crack and the static crack in PMMA material are studied by combining high-speed Schardin camera with optical caustic method. A series of dynamic optical bifocal patterns (the specimen-focused image and the off-focused image) around the propagating crack tip and the static crack tip are recorded for PMMA thin strip which contains two collinear-edge-cracks subjected to tensile loading, the variations of the caustic diameter and the distortion of the caustic shape are revealed due to the influence of local stress singularity at the crack tip. Interactions between the moving crack and the static crack are analyzed by means of the evolution of dynamic fracture parameters. The influence of crack interaction on fracture parameters is discussed based on both a K-dominance assumption and a higher order transient crack-tip expansion. These results will be useful to the evaluation of dynamic properties and the design of structures in the cracked polymer material.  相似文献   

4.
The cooling rate and heat treatment dependence of Young's modulus for Ti-base multicomponent nanostructure-dendrite composites exhibits a very different response compared with the monolithic nanostructured or normal grain-sized Ti alloys. With increasing cooling rate, the decrease in the volume fraction of the micrometer-sized β-phase dendrites induces a significant increase in Young's modulus for most of these composites. This increase can cover the decrease in Young's modulus induced by the reduction of grain size of the nanostructured matrix. Heat treatment induces a significant increase in Young's modulus due to the precipitation of intermetallics and/or α-phase in the nanostructured matrix.  相似文献   

5.
Caustics method is a powerful optical technique in fracture mechanics because of its high sensitivity to stress gradients. In this paper, it is applied to resolve dynamic fracture problems in orthotropic composites. Considering most orthotropic materials are opaque, reflective caustics method is derived here by combining the fundamental principle of caustics method with the mechanical properties of orthotropic materials. Meanwhile, corresponding experiments are carried out for typical glass fiber-reinforced composites, where mode I and mixed-mode fracture states are taken into account. By recording and analyzing shadow spot patterns during the crack propagation process carefully, crack onset time, dynamic fracture toughness and crack growth velocity of orthotropic composite are determined. These results will be useful to evaluate the dynamic fracture properties of composites and further to optimize their designs.  相似文献   

6.
 金属材料的高温动态力学性能是材料科学领域中的重要方面。本文介绍LY-12合金铝在常温至450 ℃的温度区间内和动载下(应变率为103/s),材料弹性模量的研究。此项研究采用的试验装置为一维Hopkinson压杆及管式高温炉。应用一维弹性应力波传播理论,测得LY-12铝试件在不同温度T条件下的声速c(T),按照c(T)=[E(T)/ρ(T)]1/2,获得杨氏模量E(T)随温度的变化曲线。  相似文献   

7.
It is difficult to establish structure-property relationships in a defective solid because of its inhomogeneous-geometry microstructure caused by defects. In the present research, the effects of pores and cracks on the Young’s modulus of a defective solid are studied. Based on the law of the conservation of energy, mathematical formulations are proposed to indicate how the shape, size, and distribution of defects affect the effective Young’s modulus. In this approach, detailed equations are illustrated to represent the shape and size of defects on the effective Young’s modulus. Different from the results obtained from the traditional empirical analyses, mixture law or statistical method, for the first time, our results from the finite element method (FEM) and strict analytical calculation show that the influence of pore radius and crack length on the effective Young’s modulus can be quantified. It is found that the longest crack in a typical microstructure of ceramic coating dominates the contribution of the effective Young’s modulus in the vertical direction of the crack.  相似文献   

8.
吕林梅  温激鸿  赵宏刚  温熙森 《物理学报》2014,63(15):154301-154301
本文利用标准化动态力学测量手段获得了某种高分子聚合物的动态杨氏模量,并根据时温等效原理对动态杨氏模量与声学测量在频段上的差异加以分析和转换,得到了500—7500 Hz频率范围内该黏弹性材料杨氏模量随频率变化的特性.基于所测得动态杨氏模量,采用有限元方法分析了均匀黏弹材料的吸声性能,并将仿真结果与样品声管实验数据进行对比,验证了测试所得参数的准确性.进一步仿真分析了含有局域共振结构的声学覆盖层吸声性能,并讨论了黏弹性材料的动态特性对其吸声性能的影响,提出了改进水声覆盖层低频宽带吸声特性的建议.  相似文献   

9.
Adhesive and cohesive properties of the plasma-sprayed hydroxyapatite (HA) coatings, deposited on Ti-6Al-4V substrates by varying the plasma power level and spray distance (SD), were evaluated by an indentation method. The crystallinity and the porosity decreased with increasing both of these two parameters. The microhardness value, Young's modulus (E) and coating fracture toughness (KC) were found to increase with a combinational increase in spray power and SD. The Knoop and Vickers indentation methods were used to estimate E and KC, respectively. The critical point at which no crack appears at the interface was determined by the interface indentation test. This was used to define the apparent interfacial toughness (KCa) which is representative of the crack initiation resistance of the interface. It was found that KCa reaches to a maximum at a medium increase in both spray power and SD, while other mechanical properties of the coatings reaches to the highest value with further increase in these two plasma parameters. The tensile adhesion strength of the coatings, measure by the standard adhesion test, ISO 13779-4, was shown to alter in the same manner with KCa results. It was deduced that a combinational increase in spray power and SD which leads to a higher mechanical properties in the coatings, does not necessarily tends to a better mechanical properties at the interface.  相似文献   

10.
This study adopts the Tersoff-Brenner interaction potential function in a series of molecular dynamic (MD) simulations which investigate the mechanical properties under tensile loading of (10,0) zigzag, (8,3) chiral and (6,6) armchair single-walled carbon nanotubes (SWCNTs) of similar radii. The Young's modulus values of the (10,0), (8,3) and (6,6) nanotubes are determined to be approximately 0.92, 0.95, and 1.03 TPa, respectively. Of these nanotubes, the results reveal that the (6,6) nanotube possesses the best tensile strength and toughness properties under tension. Although it is noted that under small tensions, the mechanical properties such as Young's modulus are essentially insensitive to helicity, under larger plastic deformations, they may be influenced by helicity effects. Finally, the simulations demonstrate that the values of the majority of the considered mechanical properties decrease with increasing temperature and increasing vacancy percentage.  相似文献   

11.
Molecular dynamics simulation of brittle fracture in silicon   总被引:1,自引:0,他引:1  
Brittle fracture in silicon is simulated with molecular dynamics utilizing a modified embedded atom method potential. The simulations produce propagating crack speeds that are in agreement with previous experimental results over a large range of fracture energy. The dynamic fracture toughness is found to be equal to the energy consumed by creating surfaces and lattice defects in agreement with theoretical predictions. The dynamic fracture toughness is approximately 1/3 of the static strain energy release rate, which results in a limiting crack speed of 2/3 of the Rayleigh wave speed.  相似文献   

12.
For the study of elastodynamic problems of propagating cracks it is necessary to evaluate the dynamic stress intensity factor KdI which depends on the form of expressions for the stress components existing at the running crack tip at any instant of the propagation of the crack and the corresponding dynamic mechanical and optical properties of the material of the specimen under identical loading conditions. In this paper the distortion of the form of the corresponding reflected caustic from the lateral faces of a dynamically loaded transparent and optically inert specimen containing a transverse crack running under constant velocity was studied on the basis of complex potential elasticity theory and the influence of this form on the value of the dynamic stress intensity factor was given. The method was applied to the study of a propagating Mode I crack in a PMMA specimen under various propagation velocities and the corresponding dynamic stress intensity factor KdI evaluated. Also, crack propagation behaviour of notched composites in dynamic loading modes are reviewed and evaluated. A relatively large data base using metal-epoxy particulates, rubber-toughened poly(methyl methacrylate), and Sandwich plates are given. In all cases, a combination of high-speed photography and the optical method of dynamic caustics has been used. Results on the dynamic crack propagation mode, fracture toughness and crack propagation velocities of several rubber-modified composite models are presented. The composite models studied include specimens with one and/or two ‘complex’ two-stage inclusions, i.e. PMMA round inclusions surrounded by concentric rubber rings, one and/or press-fifting inclusions without rubber interface, all under dynamic loading. In all cases both qualitative and quantitative results were obtained. Also, results on crack propagation mode, crack propagation velocity, stress intensity factors and on the influence of the sandwich phases on crack propagation mode are presented.  相似文献   

13.
Osman SAHIN 《中国物理快报》2007,24(11):3206-3209
Depth sensing indentation (DSI) tests at the range of 200-1800mN are performed on porous sialon ceramic to determine the indentation load on Young's modulus and hardness values. The Young modulus and hardness (Dynamic and Martens) values are deduced by analysing the unloading segments of the DSI test load-displacement curves using the Oliver-Pharr method. It is found that Young's modulus ET, the dynamic hardness HD and the Martens hardness HM exhibit significant indentation load dependences. The values of Young's modulus and hardness decrease with the increasing indentation load, as a result of indentation load effect. The experimental hf /hm ratios lower than the critical value 0.7, with hm being the maximum penetration depth during loading and hf the final unloading depth, indicate that our sample shows the work hardening behaviour.  相似文献   

14.
The modification of elastic properties of compressed acoustic foams is investigated. The porous sample is first submitted to a static compression and then to a dynamic excitation of smaller amplitude, corresponding to acoustical applications. The static compression induces the modification of the dynamic elastic parameters of the material. This work focuses on Young's modulus. The variation is measured with two different experimental methods: The classical rigidimeter and an absorption measurement. The effective Young's modulus is directly measured with the first method and is indirectly determined through the quarter-wave length resonance of the frame with the second one. The results of the two measurements are compared and give similar tendencies. The variation of the dynamic Young's modulus as a function of the degree of compression of the sample is shown to be separated in several zones. In the zones associated with weak compression (those usually zones encountered in practice), the variation of the effective Young's modulus can be approximated by a simple affine function. The results are compared for different foams. A simple model of the dependency of the Young's modulus with respect to the static degree of compression is finally proposed for weak compressions.  相似文献   

15.
《Composite Interfaces》2013,20(8-9):837-852
The types of crack growth in adhesive joints are reviewed and three are identified, namely central cohesive, asymmetric cohesive and interfacial. Test methods for measuring fracture toughness associated with these cracks are then outlined and include a Tapered Double Cantilever Beam (TDCB) test for a central cohesive crack and peel tests on flexible laminates for the other types of crack. In particular, fixed arm and mandrel peel tests are used. Two aerospace adhesives are used to prepare test specimens in order to conduct these tests. For one of these adhesives, all three types of crack growth were recorded and this provided an opportunity to make detailed comparisons of the three associated fracture toughness values. Of particular interest was the use of the mandrel peel method because it enabled a fracture transition (asymmetric cohesive to interfacial fracture) to be observed during the test. The fracture toughness value associated with a central cohesive crack was similar in magnitude to that for an asymmetric cohesive crack. However, the fracture toughness for interfacial fracture was much lower, but similar in magnitude to the expected value of half the fracture toughness from a TDCB test.  相似文献   

16.
The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially available Average-Power Glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime. Other measurements pertaining to the concentration quenching, thermal lensing, and saturation of the extraction are also described in this article. It is note-worthy that APG-t offers increased bandwidth near the peak of the 1054 nm gain spectrum, suggesting that this material may have special utility as a means of generating and amplifying ultrashort pulses of light.  相似文献   

17.
梁华  李茂生 《计算物理》2019,36(2):211-218
采用分子动力学方法模拟含孔洞的单晶铝单轴拉伸过程,研究晶向、孔洞体积分数、空位体积分数等对孔洞生长的影响.结果表明:对于不同的晶向,决定孔洞生长变形的微观机制不同.[010]晶向单轴拉伸情况下,形变机制主要是{111}面位错引起的堆垛层错;[111]晶向单轴拉伸情况下,形变机制主要是位错的移动、堆积与发射.此外,孔洞及空位的体积分数对[010]、[111]晶向的孔洞生长过程也有着明显的影响.总的来说,随着孔洞或者空位体积分数的增加,材料的杨氏模量变小,屈服强度、屈服应变下降.  相似文献   

18.
19.
The electro-optic holographic technique has already been used to determine Young's dynamic modulus in homogeneous materials based on the resonance frequency of the analysed samples. This paper shows a modification of the determination method of this frequency that speeds up this process thus obtaining Young's modulus. Based on the visualisation of real time fringes drawn by exciting the rods at the 1000–10,000 Hz range, the proposed method allows us to determine their resonance frequencies.

This procedure has been used in the analysis of non-homogeneous materials such as mortar and concrete. The results obtained by this method show good correlation with those determined by the conventional compression method established by Una Norma Española (UNE) regulations, but with a smaller variability as far as measurements are concerned. The variation coefficient is less than 1% with the optical method as opposed to 3% with the compression technique.  相似文献   


20.
Out-of-plane, nanoscale periodic corrugations are observed in the dynamic fracture surface of brittle bulk metallic glasses with fracture toughness approaching that of silica glasses. A model based on the meniscus instability and plastic zone theory is used to explain such dynamic crack instability. The results indicate that the local softening mechanism in the fracture is an essential ingredient for controlling the formation of the unique corrugations, and might provide a new insight into the origin of fracture surface roughening in brittle materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号