首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 531 毫秒
1.
温度对高功率半导体激光器阵列“smile”的影响   总被引:3,自引:0,他引:3  
用数值模拟与实验测试相结合的方法,研究了温度对"smile"的影响.利用有限元方法分别模拟计算了半导体激光器芯片键合及工作过程中激光器芯片中的热应力,模拟中假设激光器芯片的弯曲仅由热应力引起;计算结果表明,激光器芯片有源区的热应力随工作温度的升高而减小,由热应力导致的芯片的弯曲随温度升高而减小.实验结果表明,对于具有相同芯片、同一封装形式、同批次的器件,"smile"随温度的升高有增大或减小的趋势,这与封装前裸芯片的弯曲形态及封装热应力的综合作用有关;若封装前裸芯片为相对平直的或凸的,则封装后激光器的"smile"将随温度升高而减小;若封装前裸芯片为凹的,封装后的激光器芯片仍为凹的,则"smile"随温度升高而增大.  相似文献   

2.
提出一种采用双铜-金刚石的"三明治"封装结构,利用有限元分析方法研究了其与传统的Cu+Cu W硬焊料封装结构激光器的热应力与Smile.对比模拟结果发现新封装结构热应力降低43.8%,Smile值增加95%.在次热沉热膨胀系数与芯片材料匹配的情况下,使用弹性模量更大的次热沉材料,可对芯片层热应力起到更好的缓冲作用.以硬焊料封装结构为例,分析了负极和次热沉厚度对器件Smile的影响.结果表明负极片厚度从50μm增加到300μm,器件工作结温降低2.26℃,Smile减小0.027μm,芯片的热应力增加22.95 MPa.当次热沉与热沉的厚度比小于29%时,Smile随次热沉厚度增加而增加;而当次热沉厚度超过临界点后,Smile随次热沉厚度增加而减小.当次热沉厚度达到临界点(2300μm)时,硬焊料封装的半导体激光器具有最大的Smile值3.876μm.制备了Cu W厚度分别为300μm和400μm的硬焊料封装976 nm激光器,并测量了其发光光谱.通过对比峰值波长漂移量,发现Cu W厚度增加了100μm,波长红移增加了1.25 nm,根据温度和应力对波长的影响率可知应力减小了18.05 MPa.测得两组器件的平均Smile值分别为0.904μm和1.292μm.实验证明增加Cu W厚度可减小芯片所受应力,增大Smile值.  相似文献   

3.
Smile效应是限制二极管激光器阵列应用的一个重要因素。研究了激光器封装工艺对smile效应的影响,研究结果表明,造成smile效应的因素主要有两个:一是焊接过程中芯片的焊接压力不均匀;二是芯片与热沉的热膨胀系数不匹配。使用低膨胀系数的压条可以改善焊接过程中芯片压力的均匀性,而增大焊料凝固过程中的降温速率可以降低芯片与热沉的收缩量的差距,这两种方法都有利于改善smile效应。最后通过实验结果证明了以上方法在实际操作中是可行有效的。  相似文献   

4.
陈华  李静  周兴林  吕悦晶 《发光学报》2017,38(5):655-661
封装热应力所致smile效应是阵列封装大功率半导体激光器中普遍存在的问题。为解决这一问题,本文在研究smile效应产生机理的基础上,提出采用错温封装技术和热沉预应力封装技术降低smile效应的措施。以某808nm水平阵列封装半导体激光器为例,采用仿真分析的办法研究了上述技术的可行性和有效性。仿真分析表明,采用传统封装技术,在恢复至室温22℃后,芯片smile值约为39.36μm,采用封装前升高芯片温度至429℃的错温封装技术,可以将smile值降至1.9μm;若采用热沉预应力技术,对热沉的两个端面沿长边方向分别施加190 N的拉力,可以将smile值降至0.35μm。结果表明,这两种封装措施是有效的。错温封装技术和热沉预应力封装技术具有易于实现的优点,其中热沉预应力技术对于各种smile效应类型和不同的smile值都可以调整和修正。  相似文献   

5.
热容激光器激光介质的热力学数值模拟   总被引:6,自引:3,他引:6  
为模拟激光介质的温度、热应力的分布和变化,建立了激光介质热力学计算模型.该模型从激光介质的瞬态导热微分方程出发,得到沿纵向的热沉积功率密度,并将其作为该微元段的热载荷,加载到该微元段的泵浦区.考虑热容值、热导率、热膨胀系数和弹性模量等与温度的关系,得到激光介质的温度分布和变化,以及热应力的分布和变化.为热容激光器的实验和设计提供参考依据.  相似文献   

6.
胶粘光学元件的热应力和变形分析   总被引:1,自引:0,他引:1  
范志刚  常虹  陈守谦 《光学技术》2011,37(3):366-369
由于光学元件和装配材料热膨胀系数的不匹配,在环境温度变化时会导致光学元件中产生热应力,并引起光学元件表面产生变形,影响光学系统的性能.针对光学元件的粘接固定方式讨论了连续边缘粘接引起的热应力和变形的分析方程,得出连续边缘粘接无热厚度的解析方程.采用有限元分析软件对胶粘固定光学元件进行了建模和热应力分析,得出光学元件边界...  相似文献   

7.
热应力对非制冷红外焦平面微桥的影响及控制研究   总被引:4,自引:2,他引:2  
非制冷红外焦平面阵列的微桥结构在微加工工艺中,由于温度的剧烈变化,在薄膜中产生热应力而引起微桥的变形,将对器件产生不利影响.利用有限元分析方法,对微桥在热应力作用下产生的变形进行了分析,提出了两种控制热应变的途径:1)选择一种低热膨胀系数、低杨氏模量的电极材料;2)在电极材料的表面沉积一层SiNx薄膜.仿真结果表明,两...  相似文献   

8.
金刚石晶体不仅具有极佳的光学性质,同时也拥有极高的热导率和低的热膨胀系数,这使得金刚石激光器成为实现不受热影响高功率激光输出的重要路径。但随着激光功率的进一步提升,金刚石拉曼激光器中仍然存在不可忽视的热效应等问题,这对金刚石激光器性能提升提出了挑战。针对高功率运转情况下金刚石拉曼激光器的热效应进行了理论研究,根据热传导方程并采用有限元分析方法,模拟了金刚石温度、热应力以及热形变分布,分析了泵浦参数、晶体参数对金刚石温度、热应力、热形变的影响。此外,基于石墨片横向导热特性,设计了一种新型的用于金刚石晶体的热沉结构。与传统单一铜片散热方式相比,在泵浦功率800 W、束腰半径40μm条件下,金刚石中心温度下降了10.16 K,下表面平均应力降低了19.857 MPa,端面平均形变量减小了0.055μm。数值模拟结果表明,该方法对缓解金刚石激光的热效应,实现金刚石拉曼激光器输出功率的进一步提升和高光束质量激光输出具有重要指导意义。  相似文献   

9.
LD端面泵浦薄片激光器的温度和热应力分布研究   总被引:1,自引:1,他引:0  
为了分析薄片激光器的热效应,建立了LD端面泵浦薄片激光介质的数值模型。考虑到介质与空气的对流换热和介质材料的热力学参数随温度的变化,根据经典热传导方程和热弹性方程,运用有限单元法,得出了介质内温度和热应力的时空分布,分析了温度和热应力与泵浦功率、换热系数和时间的变化规律。模拟结果表明:热破坏主要为前表面光斑外侧的拉伸破裂;温度和应力的上升时间和热恢复时间随泵浦功率的变化不是很明显,随换热系数的增大而减小,但随着换热系数的增加,温度和应力的变化越来越小。  相似文献   

10.
高功率半导体激光器阵列已经广泛应用于许多领域。Smile效应是由高功率半导体激光器阵列(巴条)本身在封装过程中与热沉之间热膨胀系数(CTE)失配导致的热应力造成的。各个发光点在横向上不在一条直线上,从而导致半导体激光阵列整体发光弯曲。较大的Smile值可以引起光束质量降低、造成光束耦合和光束整形困难。为了降低热串扰实现巴条温度均匀化,我们在传统CS热沉的基础上,引入高热导率铜基石墨烯(GCF)与孔状结构,对CS被动式制冷半导体巴条热应力分布不均导致的Smile效应进行了数值模拟与仿真分析。在热功率为60 W的条件下,一方面,当仅有GCF材料,并且其长度为8 mm时,温差从最初的7.94 ℃降低到3.65 ℃;另一方面,在合理的温升范围内,当GCF的长度为8 mm时,结合增加热沉热阻的孔状结构时,温差进一步降低到3.18 ℃。  相似文献   

11.
We present an accurate through silicon via(TSV) thermal mechanical stress analytical model which is verified by using finite element method(FEM). The results show only a very small error. By using the proposed analytical model, we also study the impacts of the TSV radius size, the thickness, the material of Cu diffusion barrier, and liner on the stress. It is found that the liner can absorb the stress effectively induced by coefficient of thermal expansion mismatch. The stress decreases with the increase of liner thickness. Benzocyclobutene(BCB) as a liner material is better than Si O2. However,the Cu diffusion barrier has little effect on the stress. The stress with a smaller TSV has a smaller value. Based on the analytical model, we explore and validate the linear superposition principle of stress tensors and demonstrate the accuracy of this method against detailed FEM simulations. The analytic solutions of stress of two TSVs and three TSVs have high precision against the finite element result.  相似文献   

12.
热复杂边界条件三维热应力场数值模拟研究   总被引:1,自引:0,他引:1  
本文以制动盘为研究对象,基于三维对称有限元模型,运用顺序耦合数值模拟方法对制动盘制动过程传热与受力进行了探讨,分析了在热流密度、对流换热系数、辐射换热系数与时间相关的复杂的二、三类边界条件下,温度场与应力场的瞬时变化。研究结果表明,数值模拟结果与实验结果吻合程度高,证明了采用数值模拟方法对具有复杂边界条件的对象进行热应力研究与预测的可行性,同时为其他领域的传热与应力研究提供了理论依据。  相似文献   

13.
高热负荷固体激光介质的热效应已经成为制约激光器功率进一步提高的严重障碍,只有对激光介质进行有效的冷却才能保证其安全运行。以不均匀换热系数模型为基础,研究了具有非均匀内热源的侧面双向抽运板状激光介质在狭窄通道强制对流冷却情况下的耦合换热问题,对热汇冷却方案下介质的温度分布和热应力分布进行了数值模拟和分析,并对复合介质、蓝宝石和金刚石三种热汇材料进行对比。结果表明,忽视换热系数的非均匀性将导致应力计算结果偏低。对于侧面抽运、侧面冷却的激光介质,金刚石热汇冷却方案最佳,蓝宝石热汇方案次之,而复合介质方案不宜采用。  相似文献   

14.
热容型大功率半导体激光器瞬态热特性   总被引:3,自引:3,他引:0  
为研究热容型大功率半导体激光器在低环境温度、高瞬时功率、长工作间歇时间条件下的应用,建立三维瞬态热传导模型,通过有限元法计算得出热沉三维尺寸对半导体激光器瞬态热特性的影响。选取尺寸为26.6 mm×11.5 mm×4 mm的热沉进行热容型半导体激光器的封装测试,获得其在-20℃和-30℃环境温度下连续工作3.5 s过程中有源区温度随时间的变化曲线,并与数值计算的结果进行对比。结果表明,两者在误差范围内能够很好地吻合。  相似文献   

15.
空间相机电控机箱的热设计及仿真分析   总被引:2,自引:0,他引:2  
为了保证空间相机电控机箱在轨运行期间的工作温度满足使用要求,根据电控机箱的结构特点和导热路径,对电控机箱内部大功耗电子元器件进行了详细热控设计,解决了某些电子元器件发热量大、导热路径较长的问题。以某个典型元器件为例,进行了散热效果估算。最后应用有限元分析软件IDEAS-TMG建立了详细的电控机箱热分析有限元模型,根据电控机箱所处温度边界条件进行了稳态仿真分析,给出了电控机箱整体的热响应性能、印制线路板(PCB)及板上大功耗电子元器件的稳态温度分布云图,结果显示,PCB的温度为40.6~51.1℃,板上大功耗电子元器件的结温为46.3~62.5℃,均满足热控设计的指标要求。热分析结果表明电控机箱热设计合理可行,能够满足使用要求。  相似文献   

16.
 通过解热传导方程得到了半导体激光器列阵的热沉温升分布的解析表达式,并利用该解析式得到了热沉的温升分布图。分析了对流换热传热系数对上下表面温升的影响,当对流换热传热系数增大到某个值后,上下表面的温差变化很小,而温升随该系数的增大而降低,所得的结果与用有限元法算得的并经过实验验证的结果基本上是一致的。  相似文献   

17.
刘全喜  钟鸣 《物理学报》2010,59(12):8535-8541
建立了激光二极管阵列(LDA)端面抽运棒状激光介质的数值模型.考虑到介质与空气的对流换热和介质的热力学参数随温度的变化,根据经典热传导方程和热弹性方程,运用有限元法得出了复合棒状介质和未复合棒状介质内瞬态温度、热应力和应变的时空分布,分析了温度、热应力和应变随抽运功率、换热系数和时间的变化规律.结果表明,复合棒的最高温度、最大张应力和最大轴向应变的位置与未复合棒不同,并且数值分别为未复合棒的73%,60%和33%.由此可知,利用复合棒可极大地减小热效应的影响.理论分析结果可为LDA抽运固体激光器的结构优化设计和实验研究提供理论参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号