首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
依据半导体光电导效应分析了光致导电复合网栅调控机理,阐明了光致导电复合网栅的设计思路与结构特点.结合透明衬底蓝宝石基片,选取雷达波2~18GHz,红外3~12μm波段为研究对象对复合网栅结构参数进行优化和仿真,当网栅参数周期由5mm变为2.5mm、边长由4.9mm变为2.4mm时,网栅的中心谐振频率从13.2GHz变为14GHz.采用衍射光栅同轴对准原理保证两次lift-off光刻工艺的对准精度,制备的网栅周期误差小于6μm,边长误差小于5μm,满足实验要求.复合网栅的光学和电学性能测试结果为:加载复合网栅的蓝宝石衬底样件与未加载的相比,红外透过率曲线整体走势未发生变化,透过率整体下降了7.8%左右,与单独金属网栅相比相差3.4%,符合红外透过损失规律.该复合网栅在敏感波长为600nm光照射下测得的中心谐振频率从13.22GHz变为14.03GHz,与仿真结果基本一致,验证了光照对复合网栅电磁性能调控的可行性.  相似文献   

2.
张建  高劲松  徐念喜 《物理学报》2013,62(14):147304-147304
以氟化镁为基底材料, 采用基底、金属网栅与频率选择表面一体化设计方法设计了一种雷达波与光学波段双带通的结构. 利用模式匹配法对设计结构的传输特性进行了仿真研究, 并将设计结果与制备样件的测试结果进行了对比分析. 结果发现: 采用一体化设计的方法设计光学透明频率选择表面, 不仅能够快速得到电场基函数而且还能够准确预估其谐振尺寸, 从而在提高计算效率的同时避免了模式互作用零点的出现. 采用一体化设计方法获得了具有稳定滤波特性的光学透明频率选择表面, 为雷达/红外双模制导头罩的电磁屏蔽技术和隐身技术提供了一种有效技术方案. 关键词: 复合制导 频率选择表面 金属网栅 一体化设计  相似文献   

3.
在聚对苯二甲酸乙二醇酯(PET)柔性衬底上采用直流磁控溅射技术制备了氧化铟锡(ITO)透明导电薄膜,研究了衬底温度、溅射功率和溅射压强等工艺条件对薄膜光电性能的影响,并利用原子力显微镜(AFM)表征了衬底及ITO薄膜的表面形貌。结果表明,在PET衬底温度50℃、溅射功率100W和溅射压强2.66×10-1Pa的条件下,可以得到低方阻(50Ω/□)和高透过率(>90%)的透明导电薄膜。以此柔性ITO衬底为阳极,制备了结构为PET/ITO/NPB/Alq3/Mg∶Ag的柔性有机电致发光器件,在驱动电压为13V时,器件的发光亮度达到了2834cd/m2。  相似文献   

4.
为了制作基于ZnS的对雷达波高效电磁屏蔽的金属网栅,采用了一种新型的先胶后镀的光刻复制工艺。但在制作过程中,发现影响金属网栅成品率的主要因素为ZnS材料的颜色,即由于多晶ZnS的颜色和所用光刻胶的颜色相似,很难判断网栅是否显影彻底,进而影响真空镀膜过程中金属网栅膜的形成。结合金属网栅的制作工艺,通过采用镀一层过渡膜的方式,即采用镀膜、涂胶、显影、腐蚀、镀膜、去胶、腐蚀的工艺,有效地解决了ZnS颜色带来的影响。实验表明,采用该工艺一次性成功制作出线宽为8μm、周期为400μm的金属网栅。该工艺使基于ZnS金属网栅的成品率在90%以上。  相似文献   

5.
红外透明导电金属网栅薄膜   总被引:9,自引:0,他引:9  
介绍了一种既高效透过红外光 ,同时又能有效屏蔽电磁干扰的金属网栅薄膜的基本原理和制备工艺。分析了网栅参数对其光学及电磁性能的影响。介绍了利用光刻和镀膜技术 ,在红外基片上制作线条宽度小于 10 μm ,周期约 35 0 μm的金属网栅。  相似文献   

6.
硫化锌在3~5μm和7.7~9.3μm两个波段具有较高透过率,但其脆性大、耐摩擦性能较差,在其表面镀制类金刚石膜保护膜可显著提高其使用性能。直接在硫化锌基底沉积类金刚石膜难以实现,采用匹配层与过渡层的设计思想,制备出类金刚石膜与硫化锌基底之间相互牢固结合的过渡层。通过等离子体化学气相增强法在过渡层上成功制备类金刚石膜。研究了射频功率、气压等对保护膜系力学性能的影响。结果表明,镀制了硬质保护薄膜的硫化锌窗口在3~5μm和7.7~9.3μm双波段的平均透过率均高于90%,膜层硬度为硫化锌窗口近5倍。经环境试验之后,膜层光学性能与机械性能均无变化。  相似文献   

7.
当前反卫星激光武器发展迅猛,迫切需要研究和发展卫星的激光防护技术,以增强卫星在空间的生存与防护能力。本文采用可见光-近红外透明和中波吸收的玻璃基底与线性激光防护薄膜相结合的设计方法,在玻璃基板一面设计分光膜,实现1. 315μm波长的反射和0. 5~0. 8μm、1. 55μm波段的增透,在玻璃基板另一面设计双波段减反射膜,实现0. 5~0. 8μm和1. 55μm波段的增透。采用离子束溅射沉积技术,实现了激光防护窗口薄膜的制备,在0. 5~0. 8μm的平均透过率大于96%,1. 55μm的透过率大于98%,1. 315μm的透过率小于0. 1%,在2. 7μm的透过率为30%,在3. 8μm的透过率为1. 1%。实验结果表明,该方法实现了可见光-近红外-中红外波段激光防护窗口的制备,对于卫星平台防护激光武器具有重要作用。  相似文献   

8.
常温下,采用磁控溅射技术成功地在Ge基底上制备了类金刚石膜,并研究了溅射功率、碳氢气体与氩气流量比、溅射频率、基底负偏压等工艺参数对类金刚石膜沉积速率的影响和薄膜的光学性能。结果表明:溅射功率、溅射频率、碳氢气体与氩气流量比对沉积速率有显著的影响。沉积速率随着溅射功率的增大而增大,随着溅射频率的减小而增大。随着碳氢气体与氩气流量比、基底负偏压的增大沉积速率先增大后降低。制备的类金刚石膜具有较宽的光谱透明区,Ge基底单面沉积的类金刚石膜其峰值透过率最高达到63.99%。  相似文献   

9.
激光直写方法制作透明导电金属网栅   总被引:8,自引:1,他引:7  
介绍了利用激光直写光刻技术在200mm×200mm基片上制作线宽为5μm,周期为350μm的红外透明导电金属网栅的工艺过程,对激光直写光刻技术和机械刻划掩模接触光刻制作金属网栅结构的两种方法进行了比较,给出了激光直写制作金属网栅的优点.  相似文献   

10.
陈赟  李艳茹  张红胜 《中国光学》2014,7(1):131-136
为了制作基于ZnS的对雷达波高效电磁屏蔽的金属网栅,采用了一种新型的先胶后镀的光刻复制工艺。但在制作过程中,发现影响金属网栅成品率的主要因素为ZnS材料的颜色,即由于多晶ZnS的颜色和所用光刻胶的颜色相似,很难判断网栅是否显影彻底,进而影响真空镀膜过程中金属网栅膜的形成。结合金属网栅的制作工艺,通过采用镀一层过渡膜的方式,即采用镀膜、涂胶、显影、腐蚀、镀膜、去胶、腐蚀的工艺,有效地解决了ZnS颜色带来的影响。实验表明,采用该工艺一次性成功制作出线宽为8 μm、周期为400 μm的金属网栅。该工艺使基于ZnS金属网栅的成品率在90%以上。  相似文献   

11.
In this study, we developed a fabrication method of conductive and transparent Ag mesh electrodes on flexible polymer film at temperatures lower than 100?°C. Random patterned Ag mesh film was fabricated on a flexible PET substrate over 15?×?15?cm2 by a self-assembly process. It became conductive by a coupling process at low temperatures. The coupled Ag mesh film showed more than 88% transmittance in visible wavelength and less than 8.2?Ω?sq?1 in sheet resistance with figure of merit (FoM) value of 350. This transparent flexible EMI shield film fabricated with a coupled Ag mesh pattern showed high EM shielding effectiveness of ?23?dB?at 1.5–10?GHz frequency with a high transparency of 88%.  相似文献   

12.
马礼举  胡博  张翔 《应用光学》2020,41(1):55-59
为分析不同基底材料光学窗口电磁屏蔽性能,以Kohin的等效薄膜模型为基础,考虑电磁波在材料2个界面中的多次反射和折射,得到电磁波界面反射系数,利用matlab编写程序计算相同网栅、不同厚度、不同材料的屏蔽效率曲线,分析了厚度和材料对光窗屏蔽效率的影响。为验证仿真数据的准确性,在ZnS基底上制作了周期为500 μm、线宽为15 μm,电阻≤20 Ω的测试样片,测试其在8 GHz~18 GHz频段的电磁屏蔽效能。通过对比可看出:测试与理论计算数据较符合,误差约为2 dB~4 dB,计算数据可以预估光学窗口电磁屏蔽性能,为后续的设计工作提供参考。  相似文献   

13.
根据军用光学仪器的使用要求,在多光谱ZnS基底上镀制增透膜,要求薄膜在可见与近红外波段400~1000 nm及远红外波段7~11 μm的平均透射率均大于90%.采用电子束真空镀膜的方法并加以离子辅助沉积系统,通过选择ZnS和YbF3作为高低折射率材料,利用最新OptilLayer软件三大模块的功能辅助,调整镀膜工艺参数,改进监控方法,减少膜厚控制误差,在多光谱ZnS基底上成功镀制符合使用要求的增透膜.所镀膜层在可见与近红外波段400~1000 nm的平均透射率大于91%,远红外波段7~11μm的平均透射率大于90%,能够承受恶劣的环境测试,完全满足军用光学仪器的使用要求.  相似文献   

14.
The metallic-glass film of ZrCu layer deposited by co-sputtering was utilized as the metallic layer in the bi-layer structure transparent conductive electrode of ITO/ZrCu (IZC) deposited on the PET substrate using magnetron sputtering at room temperature. In addition, the pure Ag metal layer was applied in the same structure of transparent conductive film, ITO/Ag, in comparison with the IZC film. The ZrCu layer could form a continuous and smooth film in thickness lower than 6 nm, compared with the island structure of pure Ag layer of the same thickness. The 30 nm ITO/3 nm ZrCu films could show the optical transmittance of 73% at 550 nm wavelength. The 30 nm ITO/12 nm ZrCu films could show the better sheet resistance of 20 Ω/sq, but it was still worse than that of the ITO/Ag films. It was suggested that an alloy system with lower resistivity and negative mixing heat between atoms might be another way to form a continuous layer in thickness lower than 6 nm for metal film.  相似文献   

15.
赵培  刘定权  徐晓峰  张凤山 《光子学报》2008,37(12):2482-2485
为了研究制备条件对射频溅射ZnS薄膜光学常量和微结构的影响,在浮法玻璃上制备了不同溅射气压、溅射功率和溅射温度的ZnS薄膜,利用紫外可见近红外分光光度计在300~2 500 nm的波长范围内测量了薄膜的透射和反射光谱,并通过光谱拟和计算出ZnS薄膜的光学常量以及禁带宽度.通过X射线衍射分析了薄膜的微结构随溅射温度的改变.研究结果表明,随着制备条件的不同,ZnS薄膜的光学常量和微结构会发生变化.  相似文献   

16.
超薄银薄膜具有高柔韧性和优良的光电性能,是用于透明导电电极的潜在材料。通过电阻热蒸发技术以金属铝作为浸润层制备超薄银透明导电薄膜。引入铝浸润层降低银薄膜的阈值厚度,使银薄膜在K9玻璃基底上以尽可能低的厚度达到连续。对不同厚度铝浸润层上银薄膜方块电阻进行测试,经SEM图像验证后得出,1 nm铝浸润层对银薄膜具有较好的浸润效果。随后采用相同的工艺在1 nm铝浸润层上制备了不同厚度的银薄膜,透过率和方阻测试结果表明,1 nm铝浸润层上制备的10 nm银薄膜方阻值可达到13Ω/,其在0.4μm~2.5μm波段内透过率可达到50%以上。  相似文献   

17.
研究并制作了以钇铝石榴石(YAG)透明陶瓷为基底材料的衍射光栅元件。通过磁控溅射技术在YAG透明陶瓷表面溅射一层均匀致密的金属铬,获得带有硬掩模的陶瓷样品。借助接触式曝光系统进行光刻,反复试验,获得带有衍射光栅的YAG透明陶瓷样品。经光学轮廓仪检测,样品铬膜厚0.072 m,光栅细节得到完好保留。实际光栅的衍射图样再次验证了以YAG透明陶瓷代替传统微光刻基底材料制作衍射光栅的可行性,使得衍射光栅在更为复杂的环境下发挥作用成为可能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号