首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the development of two-dimensional lattice gas models for regular binary mixtures. In particular, results are reproduced concerning equilibrium solutions and an expression for the diffusion coefficient. In our model, a volume force is incorporated, and the system of macroscopic evolution equations resembles the Boussinesq approximation in convection theory. As an example, a lattice gas Rayleigh-Bénard system is considered. We conclude with a few remarks on implementation and optimisation of the program using a SIMD parallel computer.  相似文献   

2.
Internal waves are modelled in two different circumstances: in a continuously stratified fluid and at the interface between two immiscible fluids. This is done using the lattice gas approach. The standard single phase model and an immiscible two-phase model are both modified to incorporate gravitational interactions. Standing internal waves are set up in both models and are seen to oscillate under the action of the gravitational interaction. The results obtained suggest that the lattice gas approach can be a useful tool in the modelling of such phenomena. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
To resolve the characteristics of a highly complex flow, a lattice Boltzmann method with an extrapolation boundary technique was used in aneurysms with and without transverse objects on the upper wall, and results were compared with the non‐stented aneurysm. The extrapolation boundary concept allows the use of Cartesian grids even when the boundaries do not conform to Cartesian coordinates. To ease the code development and facilitate the incorporation of new physics, a new scientific programming strategy based on object‐oriented concepts was developed. The reduced flow, smaller vorticity magnitude and wall shear stress, and smaller du/dy near the dome of the aneurysm were observed when the proposed stent obstacles were used. The height of the stent obstacles was more effective to reduce the vorticity near the dome of the aneurysm than the width of the stent. The rectangular stent with 20% height‐of‐vessel radius was observed to be optimal and decreased the magnitude of the vorticity by 21% near the dome of the aneurysm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A lattice gas algorithm is proposed for the simulation of water flow in the unsaturated zone. Microscopic dynamics of a two-dimensional model system are defined. Up to four fluid particles occupy the sites of a square lattice. At each time step, the particles are sent to neighbouring sites according to probabilistic rules which depend on the permeability and the potential but not on the input velocities of the particles. On the macroscopic scale, the flow is described by a diffusion term and a Darcy term. Several extensions including higher dimension are discussed.List of Symbols c (n) constant in the definition of the rejection probabilityP forn = 1,2,3 particles at a site 0 c (n) 1 - D diffusion constant - D vertical extent of the system, measured in cells - E i vector connecting a site to its neighbour in directioni - i direction of a nearest neighbour site,i = 1,..., 4 - j direction of a nearest neighbour site,j = 1,..., 4 - j mass transport (fluid flow),j = v - j x x-component of the flowj - k(x) spatial dependence of the permeability, user defined under the constraint 0 k 1 - k () the part of the permeability which depends on the degree of saturation (seek) - k (n) (x) effective permeability at a sitex that holdsn particles - L horizontal extent of the system, measured in cells - l mac macroscopic length scale, e.g. one meter - l mic microscopic length scale (one lattice constant) - m integer number of time steps - n (x) number of particles at the lattice sitex - N A total number of particles on all A-sites - P probability for rejection of a randomly selected direction or set of directions - p arithmetic mean of the probability for a site to receive a particle from a particular neighbour (the average is taken over the four neighbours) - p i (n) probability that one out ofn particles at a site is sent in directioni - p ij (2) probability that the two particles at a site are sent in directionsi andj - t time - t mac macroscopic time scale, e.g. one day - t mic microscopic time scale (one time step) - v fluid velocity - x space vector, mostly two-dimensional:x = (x, y) - x horizontal component ofx - y vertical component ofx - quotient of microscopic and macroscopic time scales,t mic /t mac - quotient of microscopic and macroscopic length scales,l mic /l mac - i p + i is the probability that a particle is received from the neighbour atx +E i - K(X, ) effective permeability,k =k(x)k () - correlation length - degree of saturation, used synonymously with density (homogeneous porosity) - 0 value of a homogeneous particle density - ø(x) external potential (user defined), ø = gr + mat - ø(x) arithmetic mean of the external potential at the four sites surroundingx - ø i external potential at the sitex +E i - total potential, = ø + den - gr(x) gravitational potential - mat(x) matrix potential - den() density-dependent potential - n potential depending on the occupation number - (n) (x) probability that sitex is occupied byn particles - 0 (n) (n) in a system with homogeneous particle density - mac macroscopic - mic microscopic  相似文献   

5.
尹潘 《固体力学学报》2005,26(2):245-247
基于弹塑性损伤理论,结合格构细胞机以及格构模型的优点,提出了格构细胞机模型,用于模拟岩石的劈裂破坏机理并取得了较好的结果.  相似文献   

6.
This paper describes parallel computing approach for simulating turbulent flows using a moment base lattice Boltzmann method. The distribution functions of the lattice Boltzmann method are expressed by corresponding moments. Choosing proper relaxation times for higher order moments, a minimum numerical dissipation is implicitly added to stabilise the method at high Reynolds numbers. Validation of the method is made by computing free decaying periodic turbulent flows and fully developed turbulent channel flows on a GPU platform. Though the present method requires additional work to calculate the higher order moments, it is shown that additional computational cost is negligible in the GPU computing. The numerical results stably obtained for the turbulent flows are in good agreement with those of a pseudo-spectral method and corresponding DNS database.  相似文献   

7.
The lattice gas model for simulating two-phase flow, proposed by Appert and Zaleski, has been modified by the introduction of gravitational interactions and the new model has been used to simulate standing wave patterns on the free surface of a fluid. The results compare well with linear theory.  相似文献   

8.
七孔探针可压缩流场测量研究   总被引:1,自引:0,他引:1  
白亚磊  明晓  丁涛 《实验力学》2010,25(6):667-672
介绍了七孔探针用于亚音速可压缩流的标定方法。作为一种可以同时获得流动速度大小、流动偏角、总压和静压的气动测量装置,七孔探针被广泛应用于各种流动测量,包括可压缩流动。但是它的校准过程周期很长,代价昂贵,影响了探针的推广。本文以数值计算为手段,对七孔探针进行亚音速可压缩流校准与测量的研究。结果表明,其校准拟合精度流动角为2%,内外区的总静压相对标准偏差都没有超过3%,高于相同状态下的实验校准精度。在实际应用中,本方法用于指导传统实验标定方法,可以节约大量的标定时间和成本,使七孔探针在亚音速可压缩流的测量变得简单可行。  相似文献   

9.
This paper describes the development of a lattice Boltzmann (LB) model for a binary gas mixture, and applications to channel flow driven by a density gradient with diffusion slip occurring at the wall. LB methods for single component gases typically use a non‐physical equation of state in which the relationship between pressure and density varies according to the scaling used. This is fundamentally unsuitable for extension to multi‐component systems containing gases of differing molecular masses. Substantial variations in the species densities and pressures may exist even at low Mach numbers; hence, the usual linearized equation of state for small fluctuations is unsuitable. Also, existing methods for implementing boundary conditions do not extend easily to novel boundary conditions, such as diffusion slip. The new model developed for multi‐component gases avoids the pitfalls of some other LB models. A single computational grid is shared by all the species, and the diffusivity is independent of the viscosity. The Navier–Stokes equation for the mixture and the Stefan–Maxwell diffusion equation are both recovered by the model. Diffusion slip, the non‐zero velocity of a gas mixture at a wall parallel to a concentration gradient, is successfully modelled and validated against a simple one‐dimensional model for channel flow. To increase the accuracy of the scheme, a second‐order numerical implementation is needed. This may be achieved using a variable transformation method that does not increase the computational time. Simulations were carried out on hydrogen and water diffusion through a narrow channel for varying total pressure and concentration gradients. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
With the invention of the Hexagonal Lattice Gas it was hoped that this new technique would facilitate direct simulation of turbulent flow. In the past years, however, we have learned about its barriers on numerical accuracy and computational efficiency, which cannot easily be taken. The work on lattice gases has evolved in the introduction of the lattice-Boltzmann scheme. With the appropriate refinements this scheme provides the essential balance between robustness and numerical accuracy and enables us to simulate three-dimensional time-dependent flows at Reynolds numbers up to 50000.  相似文献   

11.
12.
Asghar  S.  Hanif  K.  Nadeem  S.  Hayat  T. 《Meccanica》2004,39(5):483-488
  相似文献   

13.
Over the last decade, the lattice Boltzmann method (LBM) has evolved into a valuable alternative to continuum computational fluid dynamics (CFD) methods for the numerical simulation of several complex fluid‐dynamic problems. Recent advances in lattice Boltzmann research have considerably extended the capability of LBM to handle complex geometries. Among these, a particularly remarkable option is represented by cell‐vertex finite‐volume formulations which permit LBM to operate on fully unstructured grids. The two‐dimensional implementation of unstructured LBM, based on the use of triangular elements, has shown capability of tolerating significant grid distortions without suffering any appreciable numerical viscosity effects, to second‐order in the mesh size. In this work, we present the first three‐dimensional generalization of the unstructured lattice Boltzmann technique (ULBE as unstructured lattice Boltzmann equation), in which geometrical flexibility is achieved by coarse‐graining the lattice Boltzmann equation in differential form, using tetrahedrical grids. This 3D extension is demonstrated for the case of 3D pipe flow and moderate Reynolds numbers flow past a sphere. The results provide evidence that the ULBE has significant potential for the accurate calculation of flows in complex 3D geometries. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A unified numerical scheme for the solutions of the compressible and incompressible Navier-Stokes equations is investigated based on a time-derivative preconditioning algorithm. The primitive variables are pressure, velocities and temperature. The time integration scheme is used in conjunction with a finite volume discretization. The preconditioning is coupled with a high order implicit upwind scheme based on the definition of a Roe's type matrix. Computational capabilities are demonstrated through computations of high Mach number, middle Mach number, very low Mach number, and incompressible flow. It has also been demonstrated that the discontinuous surface in flow field can be captured for the implementation Roe's scheme.  相似文献   

15.
In this paper, we present a simplified lattice Boltzmann method for non-Newtonian power-law fluid flows. The new method adopts the predictor-corrector scheme and reconstructs solutions to the macroscopic equations recovered from the lattice Boltzmann equation through Chapman-Enskog expansion analysis. The truncated power-law model is incorporated into this method to locally adjust the physical viscosity and the associated relaxation parameter, which recovers the non-Newtonian behaviors. Compared with existing non-Newtonian lattice Boltzmann models, the proposed method directly evolves the macroscopic variables instead of the distribution functions, which eliminates the intrinsic drawbacks like high cost in virtual memory and inconvenient implementation of physical boundary conditions. The validity of the method is demonstrated by benchmark tests and comparisons with analytical solution or numerical results in the literature. Benchmark solutions to the three-dimensional lid-driven cavity flow of non-Newtonian power-law fluid are also provided for future reference.  相似文献   

16.
A fully vectorised, basically three-dimensional finite-volume multi-block method for flows with complex boundaries is applied in a stripped-down two-dimensional version for the investigation of the flow field in the leading-edge region of a high-pressure turbine blade with slot cooling-jet injection. The calculation results are compared with experiments and the numerical results of other investigators. The present method yields excellent agreement with the experiments for the isentropic Mach number distributions on the blade surface. All numerical results for the velocity field were found to be in very good agreement with each other and with experiments on the suction side, while the agreement is not as good on the pressure side.  相似文献   

17.
A multi‐resolution analysis (MRA) is proposed for efficient flow computation with preserving the high‐order numerical accuracy of a conventional solver. In the MRA process, the smoothness of a flow pattern is assessed by the difference between original flow property values, and the values approximated by high‐order interpolating polynomial in decomposition. Insignificant data in smooth region are discarded, and flux computation is performed only where crucial features of a solution exist. The reduction of expensive flow computation improves the overall computational efficiency. In order to maintain the high‐order accuracy, modified thresholding procedure restricts the additional error introduced by the thresholding below the order of accuracy of a conventional solver. The practical applicability of the MRA method is validated in various continuous and discontinuous flow problems. The MRA stably computes the Euler equations for continuous and discontinuous flow problems and maintains the accuracy of a conventional solver. Overall, it substantially enhances the computational efficiency of the conventional third‐order accurate solver. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
康三军  薛郁 《力学学报》2012,44(4):718-726
研究了在同一路段上非港湾式公交车站站点的分散式和集中式设置对道路 交通的影响. 在元胞自动机交通流NaSch模型上, 提出了考虑公交车站站点分散式和集中式 设置的双车道元胞自动机交通流模型, 通过计算机模拟和理论分析, 结果表明: 在开放边界条件下, 分散式公交车站点与集中式公交车站点相比, 影响道路交通通行能力作用显著的减小; 公交车站点之间的间隔、站台的长度、公交车停靠时间以及车流中公交车的比例对交通 流量有显著的影响.  相似文献   

19.
This paper is concerned with the analysis of polyatomic gases within the framework of kinetic theory. Internal degrees of freedom are modelled using a single continuous variable corresponding to the molecular internal energy. The state of the gas is determined by the 6 fields—5 standard fields (mass density, velocity and temperature) and the dynamic pressure. Using the maximum entropy principle and the non-equilibrium entropy density, it is shown that dynamic pressure appears as a natural measure for deviation from equilibrium state. A proper collision cross section is constructed which obeys the micro-reversibility requirement. The non-linear source term in the balance law for dynamic pressure, and the entropy production rate, are determined using collision operator in the form which generalizes the known results obtained within the framework of extended thermodynamics. They are also compared with the results obtained using BGK approximation. For the proposed model the shock structure problem is thoroughly analyzed and discussed for different values of the parameters in the source term.  相似文献   

20.
In the paper, a numerical study on symmetrical and asymmetrical laminar jet-forced flows is carried out by using a lattice Boltzmann method (LBM) with a special boundary treatment. The simulation results are in very good agreement with the available numerical prediction. It is shown that the LBM is a competitive method for the laminar jet-forced flow in terms of computational efficiency and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号