首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly-efficient and practical method for the formation of ynones from a variety of acyl chlorides and terminal alkynes catalyzed by a nanosized MCM-41 anchored palladium bipyridyl complex is described herein. Aroyl, heteroaroyl, and alkyl acyl chlorides were easily coupled with terminal alkynes, giving good to high isolated yields in the presence of a very low catalyst loading (0.002-0.1 mol % Pd) in Et3N or diisopropylethylamine at 50 °C. Furthermore, the reaction scale was up to 150 mmol for a single batch reaction, providing the potential for practically synthetic application. After centrifugation, the supported catalyst was able to be recycled and reused several times with only a slight decrease in activity.  相似文献   

2.
<正>The palladium-salen complex palladium(Ⅱ) N,N'-bis{[5-(triphenylphosphonium)-methyl]salicylidene}-1,2-ethanediamine chloride was found to be a highly active catalyst for the copper- and solvent-free coupling reaction of terminal alkynes with different acyl chlorides in the presence of triethylamine as base,giving excellent ynones under aerobic conditions.  相似文献   

3.
Air‐stable CuI/cryptand‐22 complex was found to be a highly active catalyst for the solvent‐free cross‐coupling reaction of terminal alkynes with different acyl chlorides in the presence of Et3N as base to give the corresponding ynones in quantitative yields.  相似文献   

4.
A greener and efficient method for the synthesis of ynones and 1,3-diynes using copper oxide nanoparticles (CuONPs) doped reduced graphene oxide (CuO@rGO) catalyst under palladium, ligand and solvent free conditions have been developed. The catalyst was subsequently utilized for the synthesis of biologically active 1,5-benzodiazepines in one pot via sequential addition of acyl chlorides, terminal alkynes and o-phenylenediamines. The methodology initially involves in situ formation of ynones which react with o-phenylenediamines in presence of ethanol to afford a wide variety of benzodiazepines. Mild reaction conditions, good to an excellent yield of the products, cheap and recyclable catalyst make this methodology environmentally benign and sustainable.  相似文献   

5.
A novel ligand‐free synthesis of alkynyl hydrazones via coupling reaction of hydrazonyl chlorides and terminal alkynes, catalyzed by CuI led to excellent yields.  相似文献   

6.
A new approach for the efficient synthesis of eight‐membered lactams through formal [6+2] cyclization of siloxy alkynes and vinylazetidines has been developed. Evidence from a chirality transfer experiment suggests that the reaction proceeds via a [3,3]‐sigmatropic rearrangement from a ketene intermediate. This insight led to the development of alternative conditions and use of acyl chlorides as ketene precursors for the [6+2] reaction with vinylazetidines.  相似文献   

7.
An efficient and general one-pot procedure for the synthesis of pyrazoles from acid chlorides, terminal alkynes and hydrazines was described via a coupling and cyclocondensation sequence. Acid chlorides coupled with terminal alkynes to give α,β-unsaturated ynones, and in situ converted into pyrazoles by the cycloaddition of hydrazines. The desired pyrazoles were obtained with 15-85% isolated yields.  相似文献   

8.
[reaction: see text]. The reaction of perfluorinated acid chlorides with terminal alkynes is efficiently catalyzed by rhodium complexes and proceeds with retention of the CO moiety in the acid chloride to afford (Z)-1-perfluoroacyl-2-chloro-1-alkenes selectively in high yields.  相似文献   

9.
An efficient and effective microwave-assisted cross-coupling of terminal alkynes with various aryl chlorides including sterically hindered, electron-rich, electron-neutral, and electron-deficient aryl chloride is developed. It proceeds faster and generally gives good to excellent yields and also can be extended successfully to the Suzuki coupling and Buchwald-Hartwig amination, as well as the Heck coupling with inert aryl chlorides. The short reaction times and simple reaction conditions coupling with a broad substrate scope render this method particularly attractive for the efficient preparation of biologically and medicinally interesting molecules.  相似文献   

10.
Iridium complexes show high catalytic activity in intermolecular additions of acid chlorides to terminal alkynes to afford valuable (Z)-β-chloro-α,β-unsaturated ketones. Ligands in the catalytic system play a crucial role in this reaction. An N-heterocyclic carbene (NHC) is an efficient ligand for the addition of aroyl chlorides, while dicyclohexyl(2-methylphenyl)phosphine (PCy(2)(o-Tol)) is indispensable for the reaction of aliphatic acid chlorides. The addition reactions proceed regio- and stereoselectively with suppression of decarbonylation and β-hydrogen elimination, which have been two major intrinsic problems in transition-metal-catalyzed reactions. Stoichiometric reactions of active iridium catalysts with aroyl chlorides and aliphatic acid chlorides are carried out to gain insights into the reaction mechanisms.  相似文献   

11.
A simple, mild, highly efficient and transition metal-free protocol for synthesis of ynones in an ionic liquid is described. In this approach, the coupling reaction of different acid chlorides with terminal alkynes was efficiently carried out using 0.05 mol% MgCl2 in the presence of triethylamine in [bmim]Br at room temperature to afford the corresponding ynones in good to excellent yields. This method is highly efficient for various acid chlorides and alkynes including aliphatic, aromatic, and heteroaromatic substrates bearing different functional groups. The influence of some parameters in this reaction including type of ionic liquid, base and catalyst has been discussed.  相似文献   

12.
An efficient synthesis toward highly diversified α-carboline derivatives via a three-component tandem reaction using acid chlorides, terminal alkynes, and 2-aminoindole hydrochlorides has been described. The salient feature of the one-pot strategy involves regioselective [3 + 3]-cyclocondensation and the presence of water in the reaction medium to facilitate cyclization. Nonaqueous conditions furnished products in poor yields.  相似文献   

13.
An efficient and simple radical chain reaction to convert terminal alkynes into arenesulfonylmethylcyclopentanes is described. The reaction involves a radical addition–translocation–cyclization process and necessitates solely the use of readily available arenesulfonyl chlorides in tetrahydrofuran. Interestingly, this radical‐mediated C−H activation process took place with a high level of retention of configuration when an enantiomerically pure starting material was used.  相似文献   

14.
Aroyl chlorides react with terminal alkynes accompanied by decarbonylation in the presence of a catalytic amount of [RhCl(cod)](2) and PPh(3) to give the corresponding vinyl chloride derivatives regio- and stereoselectively in good yields. The catalyst efficiency is a marked function of the ratio of PPh(3) to the rhodium species; satisfactory results are obtained by employing a PPh(3)/Rh ratio of 1.0. The reaction may involve chlororhodation to the alkynes by the intermediary arylchlororhodium(III) species generated in situ followed by reductive elimination of the products, which are suggested by the results of some control experiments. In contrast to the reaction with terminal alkynes, that with some internal ones proceeds without decarbonylation to produce 2,3-disubstituted-1-indenones as the predominant products. The product structures suggest that, while the arylchlororhodium intermediate is also involved, arylrhodation to the alkynes, reinsertion of CO (coordinated to the metal), and intramolecular cyclization sequentially take place to give the indenones.  相似文献   

15.
A simple, highly efficient three-component reaction involving acid chlorides, terminal alkynes, and ethyl 2-amino-1H-indole-3-carboxylates, for the synthesis of highly diversified pyrimido[1,2-a]indoles has been described. The salient feature of the reaction involves sequential Sonogashira and [3+3] cyclocondensation reactions.  相似文献   

16.
Functionalizing and derivatising organic molecules is a centerpiece in organic synthesis. Succinctly manipulating and installing acyl moieties in organic molecules spurred the interest of chemists owing to its occurrence in natural products, bioactive molecules, pharmaceuticals, and advanced materials. Traditionally, access to acylation reaction was achieved by Friedel-Crafts reaction, Schotten-Baumann, and Vilsmeier-Haack acylation, however, these protocols own pitfalls. Further to make the acylation process attractive and environmentally friendly, toluene, aldehydes, alcohols, α-keto acids, amines, amides, esters, ethers, nitriles, alkynes, alkenes, ketenes, N-acylbenzotriazoles, ketones, thioacids, oximes, thiazolium carbinols, PIDA, diacyl disulfides and acyl salts were used as an acyl surrogates/reagents. Amusingly, these acylating reagents are considered uncommon and alternative to carboxylic acids, acid chlorides and acetic anhydrides. This short review aims to encompass the usage of acylating agents in transition-metal, metal-free, light-driven and other demanding conditions, and thus reveals their practicality.  相似文献   

17.
[reaction: see text] PdCl2(PPh3)2 combined with TBAF under solvent-free conditions provided general and fast Sonogashira cross-coupling reactions of aryl halides with terminal alkynes. In particular, this protocol could be applied to the reactions of deactivated aryl chlorides. In the presence of 3 mol % of PdCl2(PPh3)2 and 3 equiv of TBAF, a number of ArX species (X = I, Br, Cl) were coupled with alkynes to afford the corresponding products in moderate to excellent yields under copper-, amine-, and solvent-free conditions.  相似文献   

18.
Chlorothiolation of terminal alkynes with sulfenyl chlorides yields anti‐adducts without transition‐metal catalysts. In sharp contrast, transition‐metal‐catalyzed chlorothiolation has not been developed to date, possibly because organosulfur compounds can poison catalyst. Herein, the regio‐ and stereoselective palladium‐catalyzed chlorothiolation of terminal alkynes with sulfenyl chlorides is described. syn‐Chlorothiolation offers a complementary synthetic route to chloroalkenyl sulfides. 2‐Chloroalkenyl sulfides can easily be transformed into various sulfur‐containing products, most of which are often found in natural products and pharmaceuticals.  相似文献   

19.
The radical addition of the Cl? S σ‐bond in sulfenyl chlorides to various C? C triple bonds has been achieved with excellent regio‐ and stereoselectivity in the presence of a catalytic amount of a common iron salt. The reaction is compatible with a variety of functional groups and can be scaled up to the gram‐scale with no loss in yield. As well as terminal alkynes, internal alkynes underwent stereodefined chlorothiolation to provide tetrasubstituted alkynes. Preliminary mechanistic investigations revealed a plausible radical process involving a sulfur‐centered radical intermediate via iron‐mediated homolysis of the Cl? S bond. The resulting chlorothiolation adducts can be readily transformed to the structurally complex alkenyl sulfides by cross‐coupling reactions. The present reaction can also be applied to the complementary synthesis of the potentially useful bis‐sulfoxide ligands for transition‐metal‐catalyzed reactions.  相似文献   

20.
Under copper-free conditions and with Cs2CO3 as a base, PdCl2(PCy3)2 showed high catalytic activity for cross-coupling of electron-rich, electron-neutral, and electron-deficient aryl chlorides with a variety of terminal alkynes in DMSO at 100-120 degrees C affording internal arylated alkynes in good to excellent yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号