首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a SU8 unidirectional diaphragm micropump with embedded out-of-plane cantilever check valves. The device represents a reliable and low-cost solution for integration of microfluidic control in lab-on-a-chip devices. Its planar architecture allows monolithic definition of its components in a single step and potential integration with previously reported PCR, electrophoresis and flow-sensing SU8 microdevices. Pneumatic actuation is applied on a PDMS diaphragm, which is bonded to the SU8 body at wafer level, further enhancing its integration and mass production capabilities. The cantilever check valves move synchronously with the diaphragm, feature fast response (10ms), low dead volume (86nl) and a 94% flow blockage up to 300kPa. The micropump achieves a maximum flow rate of 177 μl min(-1) at 6 Hz and 200 kPa with an effective area of 10 mm(2). The device is reliable, self-priming and tolerant to particles and big bubbles. To the knowledge of the authors, this is the first micropump in SU8 with monolithically integrated cantilever check valves.  相似文献   

2.
Thermally-actuated, phase change flow control for microfluidic systems   总被引:2,自引:0,他引:2  
Chen Z  Wang J  Qian S  Bau HH 《Lab on a chip》2005,5(11):1277-1285
An easy to implement, thermally-actuated, noninvasive method for flow control in microfluidic devices is described. This technique takes advantage of the phase change of the working liquid itself-the freezing and melting of a portion of a liquid slug-to noninvasively close and open flow passages (referred to as a phase change valve). The valve was designed for use in a miniature diagnostic system for detecting pathogens in oral fluids at the point of care. The paper describes the modeling, construction, and characteristics of the valve. The experimental results favorably agree with theoretical predictions. In addition, the paper demonstrates the use of the phase change valves for flow control, sample metering and distribution into multiple analysis paths, sealing of a polymerase chain reaction (PCR) chamber, and sample introduction into and withdrawal from a closed loop. The phase change valve is electronically addressable, does not require any moving parts, introduces only minimal dead volume, is leakage and contamination free, and is biocompatible.  相似文献   

3.
微流控芯片分析化学实验室   总被引:6,自引:1,他引:5  
以作者课题组近10年所开展的系统研究工作为基础, 介绍微流控芯片分析化学实验室操作单元构建及系统整体集成, 并特别关注芯片分析化学实验室在分子水平、细胞水平和模式生物水平的应用, 在科学研究层面上证明了这种置于芯片上的分析化学实验室的可行性, 显示了其在生物医学领域广阔的应用前景.  相似文献   

4.
Oh KW  Park C  Namkoong K  Kim J  Ock KS  Kim S  Kim YA  Cho YK  Ko C 《Lab on a chip》2005,5(8):845-850
We report a practical world-to-chip microfluidic interfacing method with built-in valves suitable for microscale multichamber chip-based assays. One of the primary challenges associated with the successful commercialization of fully integrated microfluidic systems has been the lack of reliable world-to-chip microfluidic interconnections. After sample loading and sealing, leakage tests were conducted at 100 degrees C for 30 min and no detectable leakage flows were found during the test for 100 microchambers. To demonstrate the utility of our world-to-chip microfluidic interface, we designed a microscale PCR chip with four chambers and performed PCR assays. The PCR results yielded a 100% success rate with no contamination or leakage failures. In conclusion, we have introduced a simple and inexpensive microfluidic interfacing system for both sample loading and sealing with no dead volume, no leakage flow and biochemical compatibility.  相似文献   

5.
This mini-review provides a brief overview of recent devices that use networks of elastomeric valves to minimize or eliminate the need for interconnections between microfluidic chips and external instruction lines that send flow control signals. Conventional microfluidic control mechanisms convey instruction signals in a parallel manner such that the number of instruction lines must increase as the number of independently operated valves increases. The devices described here circumvent this "tyranny of microfluidic interconnects" by the serial encoding of information to enable instruction of an arbitrary number of independent valves with a set number of control lines, or by the microfluidic circuit-embedded encoding of instructions to eliminate control lines altogether. Because the parallel instruction chips are the most historical and straightforward to design, they are still the most commonly used approach today. As requirements for instruction complexity, chip-to-chip communication, and real-time on-chip feedback flow control arise, the next generation of integrated microfluidic circuits will need to incorporate these latest interconnect flow control approaches.  相似文献   

6.
Novel latching microfluidic valve structures are developed, characterized, and controlled independently using an on-chip pneumatic demultiplexer. These structures are based on pneumatic monolithic membrane valves and depend upon their normally-closed nature. Latching valves consisting of both three- and four-valve circuits are demonstrated. Vacuum or pressure pulses as short as 120 ms are adequate to hold these latching valves open or closed for several minutes. In addition, an on-chip demultiplexer is demonstrated that requires only n pneumatic inputs to control 2(n-1) independent latching valves. These structures can reduce the size, power consumption, and cost of microfluidic analysis devices by decreasing the number of off-chip controllers. Since these valve assemblies can form the standard logic gates familiar in electronic circuit design, they should be useful in developing complex pneumatic circuits.  相似文献   

7.
Acoustically enriching, large-depth aquatic sampler   总被引:1,自引:0,他引:1  
In marine biology, it is useful to collect water samples when exploring the distribution and diversity of microbial communities in underwater environments. In order to provide, e.g., a miniaturized submersible explorer with the capability of collecting microorganisms, a compact sample enrichment system has been developed. The sampler is 30 mm long, 15 mm wide, and just a few millimetres thick. Integrated in a multilayer steel, polyimide and glass construction is a microfluidic channel with piezoelectric transducers, where microorganism and particle samples are collected and enriched, using acoustic radiation forces for gentle and labelless trapping. High-pressure, latchable valves, using paraffin as the actuation material, at each end of the microfluidic channel keep the collected sample pristine. A funnel structure raised above the surface of the device directs water into the microfluidic channel as the vehicle propels itself or when there is a flow across its hull. The valves proved leak proof to a pressure of 2.1 MPa for 19 hours and momentary pressures of 12.5 MPa, corresponding to an ocean depth of more than 1200 metres. By reactivating the latching mechanism, small leakages through the valves could be remedied, which could thus increase the leak-less operational time. Fluorescent particles, 1.9 μm in diameter, were successfully trapped in the microfluidic channel at flow rates up to 15 μl min(-1), corresponding to an 18.5 cm s(-1) external flow rate of the sampler. In addition, liquid-suspended GFP-marked yeast cells were successfully trapped.  相似文献   

8.
We report a novel technique for manufacturing polymeric microparticles containing biocatalysts by the behavior of immiscible liquids in microfluidic systems and in situ photopolymerization. The approach utilizes a UV-polymerizable hydrogel/enzyme solution and an immiscible oil solution. The oil and hydrogel solutions form emulsions in pressure-driven flow in microchannels at high values of the dimensionless capillary number (Ca). The resultant hydrogel droplets are then polymerized in situ via exposure to 365 nm UV light. This technique allows for the generation of monodisperse particles whose size can be controlled by the regulation of flow rates. In addition, both manufacturing microparticles and immobilizing biocatalysts can be performed simultaneously and continuously.  相似文献   

9.
In this study, a novel method for the one-step fabrication of stacked hydrogel microstructures using a microfluidic mold is presented. The fabrication of these structures takes advantage of the laminar flow regime in microfluidic devices, limiting the mixing of polymer precursor solutions. To create multilayered hydrogel structures, microfluidic devices were rotated 90 degrees from the traditional xy axes and sealed with a cover slip. Two discreet fluidic regions form in the channels, resulting in the multilayered hydrogel upon UV polymerization. Multilayered patterned poly(ethylene glycol) hydrogel arrays (60 mum tall, 250 mum wide) containing fluorescent dyes, fluorescein isothiocyanate, and tetramethylrhodamine isothiocyanate were created for imaging purposes. Additionally, this method was used to generate hydrogel layers containing murine fibroblasts and macrophages. The cell adhesion promoter, RGD, was added to hydrogel precursor solution to enhance fibroblast cell spreading within the hydrogel matrix in one layer, but not the other. We were able to successfully generate patterns of hydrogels containing multiple phenotypes by using this technique.  相似文献   

10.
Atencia J  Beebe DJ 《Lab on a chip》2006,6(4):567-574
In this paper we explore the mechanical generation of steady-non pulsatile-flow in microfluidic systems. The rationale of the paper is inspired in the example of cardiovascular systems where at the microscale (i.e. capillaries) the flow is steady rather than pulsatile to optimize performance. We present a solution to the generation of steady flow in engineered microfluidic systems either in open or closed loop configurations via the use of disc pumps. The disc pump consists of a flat rotating disc and utilizes both viscous drag and centrifugal force to achieve pumping. Experiments using single loop and double loop microfluidic systems are presented to characterize the disc pump. Continuous flow generated by the disc pumps can be used to separate particles based on size using recirculating loops and for extraction of small particles without disturbing the concentration of bigger particles. The potential impact of this technology includes sample separation and extraction techniques into portable microfluidic labs-on-a-chip, and long term culture systems for cells in suspension.  相似文献   

11.
A novel extrusion driving protocol was developed based on micro-fabricated polydimethylsiloxane (PDMS) pneumatic valves. High efficiency liquid transfer was performed by using entirely overlapping control channels and fluid channels. A 0.5-s time is sufficient for the transfer of 9 μL sample solution between two chambers in the microchip with a nitrogen pressure of 70 kPa. The driving method was used in a microfluidic polymerase chain reaction (PCR) system, and rapid cycling of the PCR mixture in a closed loop was achieved. The amplification of DNA was demonstrated via both three-stage and two-stage PCR thermal cycling on the microchips resulting in significant reduction of the PCR time. The amplifications of 144-bp and 200-bp DNA fragments were achieved within 24 min using a three-stage protocol with 30 thermal cycles, and 130-bp DNA fragments within 12 min by using 20 thermal cycles in the two-stage system, compared to about 2 h in benchtop PCR with the same number of thermal cycles.  相似文献   

12.
Assays toward single‐cell analysis have attracted the attention in biological and biomedical researches to reveal cellular mechanisms as well as heterogeneity. Yet nowadays microfluidic devices for single‐cell analysis have several drawbacks: some would cause cell damage due to the hydraulic forces directly acting on cells, while others could not implement biological assays since they could not immobilize cells while manipulating the reagents at the same time. In this work, we presented a two‐layer pneumatic valve‐based platform to implement cell immobilization and treatment on‐chip simultaneously, and cells after treatment could be collected non‐destructively for further analysis. Target cells could be encapsulated in sodium alginate droplets which solidified into hydrogel when reacted with Ca2+. The size of hydrogel beads could be precisely controlled by modulating flow rates of continuous/disperse phases. While regulating fluid resistance between the main channel and passages by the integrated pneumatic valves, on‐chip capture and release of hydrogel beads was implemented. As a proof of concept for on‐chip single‐cell treatments, we showed cellular live/dead staining based on our devices. This method would have potential in single cell manipulation for biochemical cellular assays.  相似文献   

13.
Characterizing polymerase chain reaction (PCR) amplicons has been accomplished for the first time using flow injection analysis coupled to electrospray ionization mass spectrometry (ESI-MS). The PCR amplicons were amplified at the human tyrosine hydroxylase short tandem repeat locus from an individual homozygotic for the 9.3 allele. One product was amplified using Pfu polymerase and yielded a blunt-ended amplicon of 82 base-pairs (bp) in length. The second PCR product was amplified using Taq polymerase that resulted in an amplicon with cohesive termini of 82 bp plus either mono- or diadenylation. The two PCR amplicons were alternatively injected using a 0.5-microL loop at 2 microM for the Pfu amplicon and 1 microM for the Taq amplicon with a flow rate of 200 nL/min during data acquisition. Both PCR amplicons were accurately identified using mass measurements illustrating the compatibility of ESI-MS for genotyping short tandem repeat sequences and the potential for high-throughput genotyping of large PCR amplicons.  相似文献   

14.
To prepare spherical polymer hydrogels, we used a flow-focusing microfluidic channel device for mixing aqueous solutions of two water-soluble polymers. Continuous encapsulation of cells in the hydrogels was also examined. The polymers were bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer bearing phenyl boronic acid groups (PMBV) and poly(vinyl alcohol) (PVA), which spontaneously form a hydrogel in aqueous medium via specific molecular complexation upon mixing, even when they were in cell culture medium. The microfluidic device was prepared with polydimethylsiloxan, and the surface of the channel was treated with fluoroalkyl compound to prevent sticking of the polymers on the surface. The microfluidic channel process could control the diameter of the spherical hydrogels in the range of 30-90 μm and generated highly monodispersed diameter spherical hydrogels. We found that the polymer distribution in the hydrogel was influenced by the PVA concentration and that the hydrogel could be dissociated by the addition of d-sorbitol to the suspension. The single cells could be encapsulated and remain viable in the hydrogels. The localized distribution of polymers in the hydrogel may provide an environment for modulating cell function. It is concluded that the spontaneous hydrogel formation between PMBV and PVA in the flow-focusing microfluidic channel device is applicable for continuous preparation of a spherical hydrogel-encapsulating living cell.  相似文献   

15.
This work describes the development of a novel microdevice for forensic DNA processing of reference swabs. This microdevice incorporates an enzyme‐based assay for DNA preparation, which allows for faster processing times and reduced sample handling. Infrared‐mediated PCR (IR‐PCR) is used for STR amplification using a custom reaction mixture, allowing for amplification of STR loci in 45 min while circumventing the limitations of traditional block thermocyclers. Uniquely positioned valves coupled with a simple rotational platform are used to exert fluidic control, eliminating the need for bulky external equipment. All microdevices were fabricated using laser ablation and thermal bonding of PMMA layers. Using this microdevice, the enzyme‐mediated DNA liberation module produced DNA yields similar to or higher than those produced using the traditional (tube‐based) protocol. Initial microdevice IR‐PCR experiments to test the amplification module and reaction (using Phusion Flash/SpeedSTAR) generated near‐full profiles that suffered from interlocus peak imbalance and poor adenylation (significant ?A). However, subsequent attempts using KAPA 2G and Pfu Ultra polymerases generated full STR profiles with improved interlocus balance and the expected adenylated product. A fully integrated run designed to test microfluidic control successfully generated CE‐ready STR amplicons in less than 2 h (<1 h of hands‐on time). Using this approach, high‐quality STR profiles were developed that were consistent with those produced using conventional DNA purification and STR amplification methods. This method is a smaller, more elegant solution than current microdevice methods and offers a cheaper, hands‐free, closed‐system alternative to traditional forensic methods.  相似文献   

16.
Ji XH  Cheng W  Guo F  Liu W  Guo SS  He ZK  Zhao XZ 《Lab on a chip》2011,11(15):2561-2568
Optical barcoding technology based on quantum dot (QD)-encoded microparticles has attracted increasing attention in high-throughput multiplexed biological assays, which is realized by embedding different-sized QDs into polymeric matrixes at precisely controlled ratios. Considering the advantage of droplet-based microfluidics, producing monodisperse particles with precise control over the size, shape and composition, we present a proof-of-concept approach for on-demand preparation of QD-encoded microparticles based on this versatile new strategy. Combining a flow-focusing microchannel with a double T-junction in a microfluidic chip, biocompatible QD-doped microparticles were constructed by shearing sodium alginate solution into microdroplets and on-chip gelating these droplets into a hydrogel matrix to encapsulate CdSe/ZnS QDs. Size-controllable QD-doped hydrogel microparticles were produced under the optimum flow conditions, and their fluorescent properties were investigated. A novel multiplex optical encoding strategy was realized by loading different sized QDs into a single droplet (and thus a hydrogel microparticle) with different concentrations, which was triggered by tuning the flow rates of the sodium alginate solutions entrapped with different-colored QDs. A series of QD-encoded microparticles were controllably, and continuously, produced in a single step with the present approach. Their application in a model immunoassay demonstrated the potential practicability of QD-encoded hydrogel microparticles in multiplexed biomolecular detection. This simple and robust strategy should be further improved and practically used in making barcode microparticles with various polymer matrixes.  相似文献   

17.
采用具有紫外光聚合性能的聚乙二醇(PEG)基水凝胶材料, 通过紫外光聚合作用快速加工双层水凝胶微流控芯片, 并验证了其对肿瘤细胞代谢液进行检测的可行性. 与传统微流控芯片材料相比, 该水凝胶芯片材料具有更好的生物相容性及可操控性, 可直接加工成形, 在生物学领域特别是细胞培养过程控制方面具有良好的应用前景. 实验结果表明, 该水凝胶微流控芯片可在微尺度空间有效模拟细胞生长环境, 并实现对细胞连续捕获后的原位培养. 将该芯片与卟啉可视阵列传感器系统结合, 经代谢特征分析可有效区分不同种类肿瘤细胞, 实现芯片细胞培养平台上的细胞代谢指纹快速可视化传感检测.  相似文献   

18.
Novel fabrication techniques and polymer systems are being explored to enable mass production of low cost microfluidic devices. In this contribution we discuss a new fabrication scheme for making microfluidic devices containing porous polymer components in situ. Contact lithography, a living radical photopolymer (LRPP) system and salt leaching were used to fabricate multilayer microfluidic devices rapidly with various channel geometries and covalently attached porous polymer plugs made of various photopolymerizable substrates. LRPP systems offer the advantages of covalent attachment of microfluidic device layers and facile surface modification via grafting. Several applications of the porous plugs are also explored, including a static mixer, a high surface area-to-volume reactor and a rapidly responding hydrogel valve. Quantitative and qualitative data show an increase in mixing of a fluorescein and a water stream for channels containing porous plugs relative to channels with no porous plugs. Confocal laser scanning microscopy images demonstrate the ability to graft a functional material onto porous plug surfaces. A reaction was carried out on the grafted pore surfaces, which resulted in fluorescent labelling of the grafted material throughout the pores of the plug. Homogenous fluorescence throughout the depth of the porous plug and along pore surfaces indicated that the porous plugs were surface modified by grafting and that reactions can be carried out on the pore surfaces. Finally, porous hydrogel valves were fabricated which swelled in response to contact with various pH solutions. Results indicate that a porous hydrogel valve will swell and close more rapidly than other valve geometries made with the same polymer formulation. The LRPP-salt leaching method provides a means for rapidly incorporating porous polymer components into microfluidic devices, which can be utilized for a variety of pertinent applications upon appropriate selection of porous plug materials and surface treatments.  相似文献   

19.
Deng Y  Zhang N  Zhao L  Yu X  Ji X  Liu W  Guo S  Liu K  Zhao XZ 《Lab on a chip》2011,11(23):4117-4121
In this paper, we demonstrate a new type of microfluidic chip that can realize continuous-flow purification of hydrogel beads from a carrier oil into aqueous solution by using a laminar-like oil/water interface. The microfluidic chip is composed by two functional components: (1) a flow-focusing bead generation module that can control size and shape of beads, (2) a bead extraction module capable of purifying hydrogel beads from oil into aqueous solution. This module is featured with large branch channels on one side and small ones on the opposite side. Water is continuously infused into the bead extraction module through the large branch channels, resulting in a laminar-like oil/water interface between the branch junctions. Simulation and experimental data show that the efficiency of oil depletion is determined by the relative flow rates between infused water and carrier oil. By using such a microfluidic device, viable cells (HCT116, colon cancer cell line) can be encapsulated in the hydrogel beads and purified into a cell culture media. Significantly improved cell viability was achieved compared to that observed by conventional bead purification approaches. This facile microfluidic chip could be a promising candidate for sample treatment in lab-on-a-chip applications.  相似文献   

20.
Huang CJ  Lin JL  Chen PH  Syu MJ  Lee GB 《Electrophoresis》2011,32(8):931-938
This study presents a new microfluidic system capable of precise measurements of two important biomarkers, urea and creatinine, automatically. In clinical applications, high levels of these two biomarkers are early indicators of nephropathy or renal failure and should be monitored on a regular basis. The microfluidic system is composed of a microfluidic chip, a control circuit system, a compressed air source and several electromagnetic valves to form a handheld system. The microfluidic chip is fabricated by using micro-electromechanical systems and microfluidic techniques comprising electrochemical sensor arrays and polydimethylsiloxane-based microfluidic structures such as micropumps/micromixers, normally closed valves and microchannels. The microfluidic system performs a variety of critical processes including sample pretreatment, mixing, transportation and detection on a single chip. The experimental results show that the entire procedure takes approximately 40 min, which is much faster than the traditional method (more than 6 h). Furthermore, the total sample volume consumed in each operation is only 0.1 mL, which is significantly less than that required in a large system (5 mL). The developed automatic microfluidic system may provide a powerful platform for further clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号