首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
单分子膜诱导生物矿物晶体生长中的晶格匹配和电荷匹配   总被引:3,自引:0,他引:3  
有机基质与无机晶体的晶格几何匹配和静电相互作用是导致生物体内矿物有序生长并具有特殊理化性质的重要因素,但有机基质的作用机理至今没有完全弄清.作为模拟生物矿化的重要模板之一,Langmuir单分子膜具有独特的优势.本文综述了单分子膜诱导下生物矿物碳酸钙(文石、方解石和球霰石)、羟磷灰石、硫酸钡和纤铁矿等生长过程中的晶格匹配和电荷匹配,讨论了单分子膜亲水头基、膜的电荷性质、膜聚集态等因素对膜控晶体生长过程中晶格匹配和电荷匹配的影响,指出了该领域所面临的问题和将来的发展方向.  相似文献   

2.
在了解蛋壳的形成机理和理化性质之前,很有必要谈谈什么是生物矿化.所谓的生物矿化,是指在生物体内生成矿物的过程,即在生物体的特定部位,在一定的物理、化学条件下和有机基质的诱导下,生物体将无机物与有机基质通过自组装形成具有生物功能的特殊材料的过程,是一个高度受控的生命过程,也是动物体内一种特有的生理过程,如骨骼的发育、牙齿的生长等.  相似文献   

3.
王本  唐睿康 《化学进展》2013,(4):633-641
生物矿化是生物体制造生物矿物的过程。在自然界中,生物矿物是在有机基质控制下可控有序组装而成的,这就决定了它不同于实验室中合成的普通矿物。单细胞矿化以及生理和病理性矿化,对于人们开展硬组织生物学研究以及生物材料设计合成具有很好的借鉴和启发意义。作为骨骼、牙齿的基本构筑单元,以及其良好的生物相容性和优异的骨牙整合性,磷酸钙纳米颗粒在生物矿物的组装方面和生物硬组织修复、组织工程等方面扮演着重要的角色。另外,受单细胞生物矿化启发的细胞(或病毒)壳化,可以赋予细胞(或病毒)更好的抗逆境能力。本文综述了生物矿化,尤其是单细胞矿化和生理、病理性矿化对生物医学的启示。结合近年来国内外相关研究进展,我们从骨、牙组织修复,细胞(病毒)壳化两个方面分别阐述了生物矿化作为无机化学和生物医学的桥梁作用。深入研究生物矿化的机理以及基于生物矿化的材料合成,对于生理性矿化的仿生修复、病理性矿化的预防治疗以及细胞界面工程等方面都具有重要的启发和实践意义。  相似文献   

4.
仿生合成是模拟生物矿化合成人工晶体的一种方法。在生物矿化中的无机矿物往住是在有机基质的参与下形成的,它们在有机基质上成核,并且在整个结晶过程中受到有机基质及其他生命活动的调控,因而在晶体的形态、尺寸、以及取向上都具有高度的统一性和有序性[1],  相似文献   

5.
曹含  潘海华  唐睿康 《无机化学学报》2019,35(11):1957-1973
近年来,随着材料科学领域的发展,机械性能优异且具有特定功能的有机-无机复合材料成为了研究热点。而天然的生物矿化过程产生了在自然界中分布广泛、结构特征多样性、机械性能优异的天然生物矿物,比如牙齿、骨骼、珍珠、贝壳、海胆刺、海洋红虫颚等。这些天然复合增强材料中的矿化组织结构特点和矿化机理为仿生设计与合成具有特定结构、特定功能和优异机械性能的材料提供了理论依据。通过模拟天然过程的仿生矿化方法,利用有机基质调控无机矿物成核生长为固态矿物,最终能够定向组装具有特定有序结构和先进功能的有机-无机复合材料。本文主要综述了自然界中通过生物矿化过程得到的高强度、高韧性的天然复合增强材料,以及受生物矿化增强现象的启发,在化学与材料仿生矿化合成中出现的一些有机-无机复合的增强材料。  相似文献   

6.
珍珠、贝壳和甲壳是生物矿化的产物,具有高强度、高韧性。人们已对它们的组成、结构等进行了大量的研究犤1~4犦。结果表明,它们的主要成分是碳酸钙,但由于含有少量的蛋白质等有机基质,使其结构具有特殊的组装方式,从而显示出与纯碳酸钙迥然不同的优良物理性质和重要的生物功能。另一些研究表明胆结石、尿结石等异常生物矿化产物中也含有一定量的碳酸钙犤5犦。然而生物矿化过程非常复杂,其机理至今尚无统一说法。因此模拟生物矿化过程,了解有机基质在矿化过程中的作用,已成为化学、生物、医学和材料等多学科相互渗透和相互交叉的…  相似文献   

7.
生物矿化是生命体通过调控无机矿物的成核、取向、生长和组装来制造有机-无机复合材料的过程。借鉴生物矿化的原理,可利用有机基质实现无机材料的可控合成,制备出性能优异的新型复合材料。更有趣的是,将材料和生物体从结构和功能两个层面整合,利用材料-生物之间的协同调控,可构筑出新功能生命体,这也是仿生矿化发展的重要方向。本论文首先介绍生物矿化的基本理论和自然界中的生物矿化现象。随后通过对生物矿物结构和功能的阐述,提出仿生构筑新功能生命体的概念,并系统介绍构筑新型材料-生物体的方法,在此基础上系统总结新功能生命体在环保、能源、医学等领域的应用。最后,针对目前该领域存在的局限和问题展开讨论,对实现智能仿生构筑生命体的研究进行展望。我们认为基于仿生矿化构筑新功能生命体的研究能够推动学科边界不断融合,为材料学、化学生物学、生物无机化学以及医学等领域的发展提供新的方向。  相似文献   

8.
模拟生物矿化过程原位合成活性纳米碳酸钙   总被引:9,自引:1,他引:8  
生物矿化是一种广泛而复杂的固液之间、有机物和无机物间的物理化学过程.以少量有机质为模板,进行分子操作,高度有序地组合成无机材料.有机基质能作为构造支持的惰性底质或矿物沉淀的局限空间和核化作用的表面,确定矿物质点的形态大小、空间排列、结晶取向和同质多晶类型,并与生物晶体一起确定生物矿物硬体的机械性质.  相似文献   

9.
无机材料的仿生合成   总被引:34,自引:0,他引:34  
生物矿化重要的特征之一是细胞分泌的有机基质调制无机矿物的成核和生长, 形成具有特殊组装方式和多级结构特点的生物矿化材料(如骨、牙和贝壳)。仿生合成就是将生物矿化的机理引入无机材料合成, 以有机物的组装体为模板, 去控制无机物的形成,制备具有独特显微结构特点的无机材料, 使材料具有优异的物理和化学性能。仿生合成已成为无机材料化学的研究前沿。本文综述了无机材料仿生合成的发展现状。  相似文献   

10.
桑艳华  潘海华  唐睿康 《化学进展》2020,32(8):1100-1114
不同于研究体相或分子与分子之间的常规化学,凝聚态化学重点关注的是多层次结构的凝聚态物质,主要研究凝聚态物质的化学性质与功能、构筑机制、凝聚态物质之间的反应以及结构与功能间的关系,也是生物矿化研究中特别感兴趣的科学问题。生物矿化是通过有机基质调控无机矿物的生成,构筑具有多层次结构和特殊功能(如保护、传感和运动等)的生物凝聚态物质。研究生物矿化中的化学构筑与结构-功能关系,通过仿生矿化可以设计并制备具有类生物矿物结构和先进功能的仿生凝聚态材料。本文从凝聚态化学的角度介绍生物矿化和仿生矿化领域的概况以及取得的重要成果和新认识,重点综述了本课题组近年来受生物矿化启发,基于无机离子寡聚体的仿生新材料构筑和功能方面的研究成果。相信生物矿化将为新兴凝聚态化学的研究和发展提供良好参考,同时从凝聚态化学的新高度看待和指导生物矿化,也将促进生物矿化研究走向新的台阶。  相似文献   

11.
Numerous investigations on mineral–organic relationships in biominerals have recently been undertaken. They provide information on the biomineralization and diagenetic processes, and new insights on the important issue of the role of the organic matrices. Progress has come, in part, from improvements in analysis tools and from the combination of multi-technique observations.  相似文献   

12.
高分子基质作用下碳酸钙的仿生合成   总被引:21,自引:0,他引:21  
依据生物矿化的基本原理,在动态条件下,通过仿生合成的方法,以三种高聚物:聚乙三醇、聚乙烯醇、羟乙基纤维作为有机基质,分别合成了高聚物含量不同的三种CaCO~3/高聚物复合材料,这些无机/有机复合材料与生物体内经过生物矿化作用所形成的生物矿物颇为相似,具有独特的微观结构形态和一定的取向,这些结果对于具有生物相容性和优异性能的碳酸钙功能的合成具有一守的指导意义。  相似文献   

13.
Organic compounds have been extracted from calcium carbonate skeletons produced by three invertebrate species belonging to distinct phyla. The soluble parts of these skeleton matrices were isolated and analysed by synchrotron-based X-ray spectroscopy (XPS). The presence of calcium associated with these organic materials was revealed in every sample studied, with important variations in Ca 2p binding energy from species to species. Measured Ca 2p binding energy values are more related to compositional diversity of the mineralizing matrices of the skeletons, whose taxonomic dependence has long been established, than to the Ca carbonate polymorph selected to build the skeletal units. This suggests a physical bond between species-specific mineralizing organic assemblages and the associated calcium. Remarkably, the binding energy of 2p electrons in calcium associated with mineralizing matrices is consistently higher than Ca 2p values obtained in purely mineral carbonate (both calcite and aragonite). The ability both to identify and measure the effect of organic matrices on their mineral counterpart in calcareous biominerals opens a new perspective for a functional approach to the biomineralization process.  相似文献   

14.
原子力显微镜法研究方解石(104)面的生长及溶解   总被引:1,自引:0,他引:1  
研究生物矿化过程及生物矿物的形成机制具有重要的科学意义,这方面的研究不仅有助于我们认识自然,而且还可以指导体外仿生合成具有分级结构的功能性复合材料.原子力显微镜(atomic force microscope,AFM)是微米、纳米尺度上实时观测矿物成核或生长的强有力工具.本文综述了原子力显微镜法研究方解石(104)面生...  相似文献   

15.
In biomineralization, acidic macromolecules play important roles for the growth control of crystals through a specific interaction. Inspired by this interaction, we report on an application of the hierarchical structures in CaCO3 biominerals to a stationary phase of chromatography. The separation and purification of acidic small organic molecules are achieved by thin‐layer chromatography and flash chromatography using the powder of biominerals as the stationary phase. The unit nanocrystals and their oriented assembly, the hierarchical structure, are suitable for the adsorption site of the target organic molecules and the flow path of the elution solvents, respectively. The separation mode is ascribed to the specific adsorption of the acidic molecules on the crystal face and the coordination of the functional groups to the calcium ions. The results imply that a new family of stationary phase of chromatography can be developed by the fine tuning of hierarchical structures in CaCO3 materials.  相似文献   

16.
In this work, a supramolecular hydrogel formed from N,N',N'-tris(3-pyridyl)-trimesic amide was reported to serve as the matrix for the growth of biominerals. The organic hydrogel scaffold contains nitrogen heterocyclic ring and amide groups that can bind anions of the mineral (specially here, carbonate ions and phosphate ions) through hydrogen bonding interactions and act as the biomineralization active sites for growing biominerals. Calcium carbonate nucleated on the site of the hydrogel fiber where carbonate ions bonded and left obvious hydrogel fiber prints on the obtained product. Calcium phosphate grew into curved platelike nanostructures along the hydrogel fibrous network. XRD pattern and FT-IR spectra confirmed the formation of minerals on the hydrogel. The results indicate that the hydrogen bonding interaction can provide strong enough binding force for the growth of the minerals on organic scaffolds. Our finding extends the organic scaffolds into biodegradable small molecule hydrogels and also extends the growth centers of the minerals from conventional carboxylate groups binding Ca(2+) to amide and pyridyl groups binding PO(4)(3-).  相似文献   

17.
生物矿化中的无定形碳酸钙   总被引:2,自引:0,他引:2  
本文综述了无定形碳酸钙的结构、合成和表征方法,阐明了无定形碳酸钙是一种热力学上的不稳定相.具有功能基团的有机高分子、功能蛋白质以及无机镁离子等添加剂对它有一定的稳定作用,抑制它的转化;但是在一定条件下它将转化成结晶态的碳酸钙.无定形碳酸钙具有高可溶性、各向同性和可塑性,正是这些特性使得生物采用它作为生物矿物的前体来矿化,形成具有精美结构的各种生物矿物.通过对无定形碳酸钙的研究,能够更加深入地了解生物矿化的机理,更好地仿生合成和制备各种功能材料.  相似文献   

18.
Although the polymorphism of calcium carbonate is well known, and its polymorphs—calcite, aragonite, and vaterite—have been highly studied in the context of biomineralization, polyamorphism is a much more recently discovered phenomenon, and the existence of more than one amorphous phase of calcium carbonate in biominerals has only very recently been understood. Here we summarize what is known about polyamorphism in calcium carbonate as well as what is understood about the role of amorphous calcium carbonate in biominerals. We show that consideration of the amorphous forms of calcium carbonate within the physical notion of polyamorphism leads to new insights when it comes to the mechanisms by which polymorphic structures can evolve in the first place. This not only has implications for our understanding of biomineralization, but also of the means by which crystallization may be controlled in medical, pharmaceutical, and industrial contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号