首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In the present work, graphite grains of different sizes were added into the electrolyte to prepare ceramic coatings on aluminum by plasma electrolytic oxidation (PEO). Scanning electron microscopy (SEM) coupled with an energy dispersive X-ray analysis system (EDX), Raman spectroscopy and X-ray diffractometer (XRD) were used to characterize the coatings. A three-electrode system was used to evaluate the corrosion performances of the coatings in a 3.5 wt.% NaCl solution. It was found that the morphology and corrosion performance of the coatings were significantly influenced by the size of the graphite grains. Compared with bigger graphite grains, finer ones were involved in the oxidation process and embedded within the ceramic coatings, which made the coatings less porous and more compact. Thus, the corrosion resistance of the coatings with embedded graphite grains was greatly improved.  相似文献   

2.
Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar+ ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar+ ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.  相似文献   

3.
Ceramic coatings oxidized for different time periods were prepared to characterize the plasma electrolytic oxidation (PEO) process of AZ91D magnesium alloy. The coatings were analyzed using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscope and potentiodynamic polarization measurement. The results show that the PEO coatings perform different growth behaviors at different PEO stages, and different morphologies are exhibited on α- and β-phase of Mg substrate. The corrosion resistance measurement predicates that within the first 30 min oxidation, coating oxidized for 20 min is the best corrosion resistant.  相似文献   

4.
Ceramic coatings on the surfaces of Mg-9Al-1Zn (AZ91) magnesium alloy and Mg-9Al-1Zn-1Nd magnesium alloy (AZ91 magnesium alloy modified by neodymium, named as AZ91Nd in this paper) are synthesized in aluminate electrolyte by plasma electrolytic oxidation (PEO) process, respectively. X-ray diffraction and X-ray photoelectron spectroscopy analyses show the PEO coating on the Mg-9Al-1Zn-1Nd alloy comprises not only MgO and Al2O3, which are found in the coating on the AZ91 alloy, but also a trace amount of Nd2O3. Microstructure observations indicate the addition of Nd can decrease the sizes of β phases and form Al2Nd intermetallics in the AZ91 alloy. The fine β phases can effectively restrain the formation of unclosed-holes and greatly decrease the sizes of pores in the coating during the PEO process. In addition, the Al2Nd intermetallics can be completely covered due to the lateral growth of the PEO coatings formed on the α and β phases. As a result, the coating on the AZ91Nd alloy possesses a dense microstructure compared with that on the AZ91 alloy. The following corrosion tests indicate the corrosion resistance of the PEO coating on the AZ91Nd alloy is evidently higher than that of the PEO coating on the AZ91 alloy.  相似文献   

5.
In this study, Ni-P-CNT composite coating was successfully deposited on the surface of copper by electroless plating. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) were used to characterize the coatings. The wear behavior of the coatings was investigated using a pin-on-disk test rig and subsequently friction coefficient data were reported. The corrosion behavior of the Ni-P and Ni-P-CNT coated specimen were evaluated through polarization curves and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl aqueous solution at the room temperature. The results indicated that the incorporation of carbon nanotubes (CNTs) in the coating improved both tribological behavior and corrosion resistance. These improvements have been attributed to superior mechanical properties, unique topological structure and high chemical stability of nanotubes.  相似文献   

6.
Poly(o-anisidine) (POA) coatings were synthesized on brass by electrochemical polymerization of o-anisidine in aqueous salicylate solution by using cyclic voltammetry. These coatings were characterized by cyclic voltammetry, UV–visible absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The corrosion protection aspects of POA coatings on brass in aqueous 3% NaCl solution were investigated by potentiodynamic polarization technique and electrochemical impedance spectroscopy (EIS). The potentiodynamic polarization measurements show that the POA coating has ability to protect the brass against corrosion. The corrosion potential was about 0.204 V versus SCE more positive for the POA coated brass than that of uncoated brass and reduces the corrosion rate of brass almost by a factor of 800. The corrosion behavior of the POA coatings was also investigated by EIS through immersion tests performed in aqueous 3% NaCl solution. The evolution of the impedance parameters with the immersion time was studied and the results show that the POA acts as a protective coating on brass against corrosion in 3% NaCl solution. The water uptake and delamination area were also determined to further support the corrosion protection performance of the POA coating.  相似文献   

7.
A novel environment-friendly conversion coating for Mg-8.5Li alloy was obtained by immersing in a solution of molybdate. The concentration of ammonium molybdate and the addition of potassium permanganate were discussed in this experiment. The surface morphology of the conversion coatings was observed by scanning electron microscopy (SEM), and the chemical composition was investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The corrosion resistance of Mg-8.5Li alloy and conversion coatings were investigated by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurement. The results showed that the coatings with cracked morphology were homogeneous and uniform. The conversion coatings were mainly composed of metal-oxide as detected by XPS. The results of electrochemical measurement and weight loss measurement revealed that the molybdate conversion coating had better corrosion resistance than bare alloy and chromate conversion coating, and the molybdate/permanganate conversion coating had lower corrosion current density and higher coating resistance than the molybdate conversion coating.  相似文献   

8.
Ni-Co/nano TiO2 (Ni-Co-TiO2) composite coatings were prepared under pulse current and pulse reverse current methods using acetate bath. The microstructure and corrosion resistance of the coatings were characterized by means of XRD, SEM and EIS. Both the Ni-Co alloy and composite coatings exhibited single phase of Ni matrix with face centered cubic (fcc) crystal structure. The crystal orientation of the Ni-Co-TiO2 composite coating was transformed from crystal face (2 0 0) to (1 1 1) compared with Ni-Co alloy coatings. The results showed that the microstructure and performances of the coatings were greatly affected by TiO2 content on the deposits prepared by PC and PRC methods. The microhardness and corrosion resistance were enhanced in the optimum percentage of TiO2 composite coatings. The PRC composite coatings were exhibited from compact surface, higher microhardness and good corrosion resistance compared with that of the PC composite coating.  相似文献   

9.
In current research, low carbon steel plates were coated by Ni-P electroless method. The effect of adding different concentrations (ranging from 0.01 g/l to 0.5 g/l) of TiC nano-sized particles to the plating bath on deposition rate, surface morphology and corrosion behavior of Ni-P-TiC composite coatings were investigated. The surface morphology and the relevant structure were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Corrosion behavior of the coated steel was evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques. The results showed that addition of TiC nano-particles to Ni-P electroless bath not only changes the surface morphology of Ni-P coating, but also improves corrosion resistance of the steel in comparison with TiC free Ni-P electroless coating. In addition, the deposition rate of coating was also affected by incorporation of TiC particles. It was also found that improvement in corrosion resistance largely depends on the phosphorous and TiC concentrations on the coatings.  相似文献   

10.
Ni-B coatings have been deposited on the surfaces of commercial steels (SAE-1026). The depositions were carried out using the electroless plating technique employing a nickel chloride solution with borane-dimethylamine as the reducing agent. These specimens were subsequently heat treated at different temperatures (300-500 °C) and different periods of time. The obtained coating thickness was in the order of approximately 1.5 μm. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used to characterize the structure and superficial morphology of the coatings. Phases like Ni, Ni3B and Ni4B3 were observed through X-ray diffraction and confirmed by differential scanning calorimeter (DSC) studies. Some of the precipitated phases have been structurally characterized. The corrosion behavior of the coated surfaces was carried out by electrochemical impedance spectroscopy (EIS) using electrolytic sodium chlorine solutions with pH 2 and 7. The EIS results showed an active corrosion mechanism in acid solution while diffusion-reaction phenomena are predominant in neutral solution.  相似文献   

11.
The aim of this work is to discuss the growth characteristics and corrosion behavior of the prepared ceramic coatings on titanium by plasma electrolytic oxidation (PEO) technique in different electrolytes. PEO process was carried out on titanium under constant voltage regime using a pulse power supply. Three kinds of electrolytes, phosphate, silicate and borate based solutions, were used to evaluate the influence of electrolyte composition on the structure, surface morphology, phase composition and corrosion behavior of prepared ceramic oxide films (titania). The phase composition of the coatings was investigated by X-ray diffraction. Scanning electron microscopy was employed to evaluate the growth and surface morphology of coatings. Elements of coatings were investigated with energy dispersive spectrometer. Corrosion behavior of the coatings was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. The spark voltage of oxide films had a significant effect on the surface morphology, size and homogeneity of micro-pores, thickness and corrosion properties of coatings.  相似文献   

12.
Producing titania and hydroxyapatite (HA) bioceramic coating on titanium alloys increases corrosion resistance and biocompatibility of these alloys. Plasma electrolytic oxidation (PEO) is one of the effective techniques for producing this type of coating. This method produces coatings with enough thickness and appropriate adhesion. In this study, titania and HA were directly produced on Ti-6Al-4V by applying PEO process in a Ca- and P-containing electrolyte by changing voltage and time parameters. Morphology and cross section, chemical composition and elements of coatings were investigated by scanning electron microscope, X-ray diffraction and energy dispersive spectroscopy, respectively. Corrosion behavior of the samples was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. The results indicated that the formation of HA phase with titania needs a minimum voltage below which HA is not formed. By increasing the operation time, the amount of the formed HA increased. Also, the sample coated at 500 V and 15 min showed the best corrosion behavior in Ringer's solution.  相似文献   

13.
Plasma electrolytic oxidation (PEO) of a ZC71/SiC/12p-T6 magnesium metal matrix composite (MMC) is investigated in relation to coating growth and corrosion behaviour. PEO treatment was undertaken at 350 mA cm−2 (rms) and 50 Hz with a square waveform in stirred 0.05 M Na2SiO3.5H2O/0.1 M KOH electrolyte. The findings revealed thick, dense oxide coatings, with an average hardness of 3.4 GPa, formed at an average rate of ∼1 μm min−1 for treatment times up to 100 min and ∼0.2 μm min−1 for later times. The coatings are composed mainly of MgO and Mg2SiO4, with an increased silicon content in the outer regions, constituting <10% of the coating thickness. SiC particles are incorporated into the coating, with formation of a silicon-rich layer at the particle/coating interface due to exposure to high temperatures during coating formation. The distribution of the particles in the coating indicated growth of new oxide at the metal/coating interface. The corrosion rate of the MMC in 3.5% NaCl is reduced by approximately two orders of magnitude by the PEO treatment.  相似文献   

14.
In this work titanium nitride (TiN) coatings were deposited on NiTi surgical alloy by arc ion plating (AIP). The open circuit testing and electrochemical impedance spectroscopy (EIS) have been employed to study the corrosion performance of the TiN coated samples in Troyde’s simulated body fluid. It was found that the TiN coating showed a good corrosion resistance at the beginning of long-term immersion; with the increase of immersion time, however, the corrosion resistance of the coating deteriorated after nearly 24 h of immersion; moreover, the large areas of the coating had fallen off the substrate after 30 days of immersion.  相似文献   

15.
An attempt was made to produce calcium containing plasma electrolytic oxidation (PEO) coatings on AM50 magnesium alloy using an alkaline electrolyte. This study was performed in three alkaline electrolytes containing calcium hydroxide and sodium phosphate with three different mass ratios viz., 1:2.5, 1:5 and 1:7.5. All the three coatings produced were found to contain Ca and P in appreciable amounts. The concentration of P was found to be higher in the coatings obtained in the electrolytes with higher concentration of phosphate ions. Even though all the three coatings were found to be constituted with magnesium oxide and magnesium phosphate phases, X-ray diffraction analyses revealed that the phase composition was influenced by the phosphate ion concentration/conductivity of the electrolyte. Further, the PEO coating obtained in the 1:7.5 ratio electrolyte was found to contain di-calcium phosphate (monetite) and calcium peroxide phases, which were absent in the other two coatings. Potentiodynamic polarization studies performed in 0.1 M NaCl solution showed that the coatings obtained from the 1:5 ratio electrolyte possessed a superior corrosion resistance, which is attributed to the combined effect of thickness, compactness and phase/chemical composition of this coating.  相似文献   

16.
Ni-Zn-P-TiO2 composite coatings were successfully obtained on low carbon steel by electroless plating technique. Deposits were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive analysis (EDS) studies. The hardness and microstructure of as plated and heat treated Ni-Zn-P and Ni-Zn-P-TiO2 composite coatings were analyzed. The change in microstructure and higher hardness was noticed for heat treated composite. The corrosion resistance behavior of as plated and heat treated Ni-Zn-P and Ni-Zn-P-TiO2 coatings was investigated by anodic polarization, Tafel plots and electrochemical impedance spectroscopic (EIS) studies in 3.5 wt% NaCl solution. The composite coating exhibited enhanced corrosion resistance property over Ni-Zn-P coating.  相似文献   

17.
A novel Ni based coating - plasma electrolytic oxidation (PEO) pre-treatment followed by electroless nickel (EN) plating - has been developed to produce pore free Ni coatings on AZ91 magnesium alloy. The application of the PEO film between the nickel coating and the substrate acts as an effective barrier and catalytic layer for the subsequent nickel plating. The potentiodynamic tests indicated that the corrosion current density of the PEO + EN plating on AZ91 decreased by almost two orders of magnitudes compared to the traditional EN coating. Salt fog spray testing further proved this improvement. More importantly, the new technique does not use Cr+6 and HF in its pretreatment, therefore is a much environmentally friendlier process.  相似文献   

18.
Plasma electrolytic oxidation (PEO) is a cost-effective technique that can be used to prepare ceramic coatings on metals such as Ti, Al, Mg, Nb, etc., and their alloys, but this promising technique cannot be used to modify the surface properties of steels, which are the most widely used materials in engineering. In order to prepare metallurgically bonded ceramic coatings on steels, a combined technique of arc spraying and plasma electrolytic oxidation (PEO) was adopted. In this work, metallurgically bonded ceramic coatings on steels were obtained using this method. We firstly prepared aluminum coatings on steels by arc spraying, and then obtained the metallurgically bonded ceramic coatings on aluminum coatings by PEO. The characteristics of duplex coatings were analyzed by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The corrosion and wear resistance of the ceramic coatings were also studied. The results show that, duplex Al2O3/aluminum coatings have been deposited on steel substrate after the combined treatment. The ceramic coatings are mainly composed of α-Al2O3, γ-Al2O3, θ-Al2O3 and some amorphous phase. The duplex coatings show favorable corrosion and wear resistance properties. The investigations indicate that the combination of arc spraying and plasma electrolytic oxidation proves a promising technique for surface modification of steels for protective purposes.  相似文献   

19.
《Current Applied Physics》2009,9(5):1067-1071
Ceramic coating was achieved on Q235 carbon steel by PEO (plasma electrolytic oxidation, PEO) without any pretreatment in sodium aluminate system. The discharge process as well as the accompanied surface morphology evolution was analyzed. The phase and elemental composition of the coatings were also investigated. The corrosion, mechanical and tribological properties of the ceramic coating were primarily studied. It is found that the coating surface was porous and the thickness of the coating was about 120 μm. The coating mainly consisted of FeAl2O4, Fe3O4 and a little γ-A12O3. The corrosion current of the coated sample was 3.082 × 10−7 A/cm2, which was decreased by two orders of magnitude compared with the uncoated one. The micro hardness of the ceramic coating was 1210 Hv, which was about three times as that of the uncoated sample. The friction coefficient of coated sample was also well improved. Investigations revealed that PEO provided a promising technique for preparation of protective ceramic coatings on steels.  相似文献   

20.
This paper has shown a successful protective coating scheme for powder-sintered Nd–Fe–B permanent magnet using multi-layered electroless nickel (EN) deposition. A low-phosphorus nickel layer is plated with an alkaline EN solution first, followed by a high-phosphorus nickel layer plated with an acidic solution. An additional topcoat by medium-phosphorus nickel on the high-phosphorus coating is also explored. It is shown that the high-phosphorus nickel layer coated in acidic solution provides the best corrosion protection because of its dense amorphous structure. The medium phosphorus topcoat is also dense and is able to provide reasonable corrosion resistance. The low-phosphorus layer itself does not have enough corrosion resistance; its main role is to provide an intermediate coating on the powder-sintered magnet. X-ray diffraction measurement shows that the low-phosphorus coating consists of nano-crystallines, and the high- and the medium-phosphorus coatings are dominated by amorphous structure. Microscopic observation and scratch test on these composite coatings demonstrate good adhesion between the magnet and the coatings. Remanence and coercivity of the plated magnet decrease with the applied coatings, but measured values are still very attractive for practical applications among known hard magnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号