首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The formation and dynamics of spatially extended compositional domains in multicomponent lipid membranes lie at the heart of many important biological and biophysical phenomena. While the thermodynamic basis for domain formation has been explored extensively in the past, domain growth in the presence of hydrodynamic interactions both within the (effectively) two-dimensional membrane and in the three-dimensional solvent in which the membrane is immersed has received little attention. In this work, we explore the role of hydrodynamic effects on spinodal decomposition kinetics via continuum simulations of a convective Cahn-Hilliard equation for membrane composition coupled to the Stokes equation. Our approach explicitly includes hydrodynamics both within the planar membrane and in the three-dimensional solvent in the viscously dominated flow regime. Numerical simulations reveal that dynamical scaling breaks down for critical lipid mixtures due to distinct coarsening mechanisms for elongated versus more isotropic compositional lipid domains. The breakdown in scaling should be readily observable in experiments on model membrane systems.  相似文献   

3.
A microfluidic device was designed allowing the formation of a planar lipid bilayer across a micron-sized aperture in a glass slide sandwiched between two polydimethylsiloxane channel systems. By flushing giant unilamellar vesicles through a 500-μm-wide channel above the hole, we were able to form a planar lipid bilayer across the hole, resulting in a giga-seal. We demonstrate incorporation of biological nanopores into the bilayer. This miniaturized system offers noise recordings comparable to open headstage noise (under 1 pA RMS at 10 kHz), fast precision perfusion on each side of the membrane and the use of nanoliter analyte volumes. This technique shows a promising potential for automation and parallelization of electrophysiological setups.  相似文献   

4.
In order to elucidate the role of structural change of lipid membrane bilayer in the mode of action of local anesthetic, we studied the effects of local anesthetics, charged tetracaine and uncharged benzocaine, on ion permeability across various lipid planar bilayers (PC, mixed PC/PS (4/1, mol/mol); mixed PC/PE (1/1, mol/mol); mixed PC/SM (4/1, mol/mol)) under a constant applied voltage. The membrane conductances increased in the order of PC  PC/PS ≤ PC/SM  PC/PE. When the constant voltage of −100 or −70 mV was applied through the lipid bilayer membranes in the presence of positively charged tetracaine, the fluctuating current pulses with the large amplitude generated, but not appeared in the absence of tetracaine. The addition of uncharged benzocaine generated the fluctuating currents with the small amplitude. Both charged tetracaine and uncharged benzocaine facilitated electrophoretically the transport of small ions such as KCl in the buffer solution through the fluctuating pores in the lipid bilayer membranes formed by interaction with the local anesthetic under the negative applied membrane potential. The current pulses also contained actual transport of charged tetracaine together with the transport of the small ions. The amplitude and the duration time of the electrical current generated by adding the local anesthetics were dependent on the type of the lipid, the applied voltage and its voltage polarity.  相似文献   

5.
Conventional bilayer lipid membranes (BLMs), formed by either the painting method or the Langmuir-Blodgett technique, lack the desired stability. This paper presents a simple method for forming long-lived BLMs on agar-gel supports. The supported BLM reported has a greatly improved mechanical stability and also has desirable dynamic properties. These self-assembled BLMs are of significant interest, in view of their similarity of biological membranes, their molecular dimension and their spontaneous formation.  相似文献   

6.
Transmembrane ion transport by arachidonic acid (AA) through bilayer lipid membranes (BLMs) was investigated by means of electrochemical measurements to provide a basis for designing a sensor membrane. We found that AA induces a channel-type current, in addition to a carrier-type current, across planar BLMs. A linear relation between the logarithmic value of the AA concentration and the current responses (given as integrated currents) was observed for a carrier-type current, while a sigmoid relation was found for a channel-type current. Although AA transports Na+, Ca2+ and Mg2+ and exhibits ion selectivity between Na+ and Mg2+ for the carrier-type current, ion transport for the channel-type current was non-selective. It was found that ion transport via the channel mechanism occurs frequently for AA, while channel-type currents were only occasionally observed for y-linolenic acid and prostaglandin D2. No channel-type currents were induced by other fatty acids (oleic, linoleic, stearic, myristic, eicosapentanoic and docosahexanoic acids) and metabolites of AA (12-HETE and 5-HETE). The carrier-type ion transport occurs selectively to these compounds if the concentration is below 1.0 microM. These results suggest that AA selectively facilitates an ion flux through the BLMs, generating channel-type and/or carrier-type currents, which can be used as a measure of the AA concentration.  相似文献   

7.
A technique has been developed for monitoring the interaction of charged phospholipid vesicles with planar bilayer lipid membranes (BLM) by use of the antibiotics Valinomycin, Nonactin, and Monazomycin as surface-charge probes. Anionic phosphatidylserine vesicles, when added to one aqueous compartment of a BLM, are shown to impart negative surface charge to zwitterionic phosphatidylcholine and phosphatidylethanolamine bilayers. The surface charge is distributed asymmetrically, mainly on the vesicular side of the BLM, and is not removed by exchange of the vesicular aqueous solution. Possible mechanisms for the vesicle-BLM interactions are discussed.  相似文献   

8.
Interfacial tension is an important characteristic of a biological membrane because it determines its rigidity, thus affecting its stability. It is affected by factors such as medium pH and by the presence of certain substances, for example cholesterol, other lipids, fatty acids, amines, amino acids, or proteins, incorporated in the lipid bilayer. Here, the effects of various parameters to on interfacial tension values of bilayer lipid membranes are discussed.  相似文献   

9.
Lipid bilayer membranes form compartments requisite for life. Interfacing supramolecular systems, including receptors, catalysts, signal transducers and ion transporters, enables the function of the membrane to be controlled in artificial and living cellular compartments. In this perspective, we take stock of the current state of the art of this rapidly expanding field, and discuss prospects for the future in both fundamental science and applications in biology and medicine.

This perspective provides an overview of the current state of the art in supramolecular chemistry in lipid bilayer membranes, including receptors, signal transducers, catalysts and transporters, and highlights prospects for the future.  相似文献   

10.
In order to incorporate integral proteins in a functionally active state, metal-supported lipid bilayers must have a hydrophilic region interposed between the bilayer and the metal. This region is realized with a hydrophilic molecule terminating at one end with a sulfhydryl or disulfide group that anchors this "hydrophilic spacer" to the surface of a metal, such as gold or mercury. The other end of the hydrophilic spacer may be covalently linked to the polar head of a phospholipid molecule, giving rise to a supramolecule called "thiolipid" (TL). With respect to gold, mercury has the advantage of providing a defect-free and fluid surface to the self-assembling spacer. Hydrophilic spacers consisting of a polyethyleneoxy or a hexapeptide chain, as well as thiolipids derived from these spacers, were employed to fabricate mercury-supported lipid bilayers. The formation of a lipid bilayer on top of a self-assembled monolayer of a hydrophilic spacer, or of a single-lipid monolayer on top of a self-assembled monolayer of a thiolipid, was realized by simply immersing the coated mercury electrode into an aqueous solution across a lipid film previously spread on its surface at its spreading pressure. Particularly stable mercury-supported lipid bilayers were obtained by using thiolipids. The biomimetic properties of these lipid bilayers were tested by incorporating channel-forming polypeptides (gramicidin and melittin) and proteins (OmpF porin). The effect of the transmembrane potential on the function of these channels was estimated by using a simple electrostatic model of the mercury-solution interphase.  相似文献   

11.
X Han  E Wang 《Analytical sciences》2001,17(10):1171-1174
Ferricyanide anion has usually been used as a marker of ion-channel sensors. In this work we first found that ferricyanide, itself, can act as a stimulus to regulate the permeability of sBLM prepared from didodecyldimethylammonium bromide (a kind of synthetic lipid) on a GC electrode. We used cyclic voltammetry and a.c. impedance to investigate this phenomenon. The interaction between sBLM and ferricyanide concerns time. Furthermore, we developed a sensor for ferricyanide anion. The ion-channel sensor is highly sensitive. It can detect ferricyanide concentration as low as 5 microM.  相似文献   

12.
Cellular membranes exhibit a variety of controlled curvatures, with filopodia, microvilli, and mitotic cleavage furrows being only a few of many examples. Coupling between local curvature and chemical composition in membranes could provide a means of mechanically controlling the spatial organization of membrane components. Although this concept has surfaced repeatedly over the years, controlled experimental investigations have proven elusive. Here, we introduce an experimental platform, in which microfabricated surfaces impose specific curvature patterns onto lipid bilayers, that allows quantification of mechanochemical couplings in membranes. We find that, beyond a critical curvature value, membrane geometry governs the spatial ordering of phase-separated domain structures in membranes composed of cholesterol and phospholipids. The curvature-controlled ordering, a consequence of the distinct mechanical properties of the lipid phases, makes possible a determination of the bending rigidity difference between cholesterol-rich and cholesterol-poor lipid domains. These observations point to a strong coupling between mechanical bending and chemical organization that should have wide-reaching consequences for biological membranes. Curvature-mediated patterning may also be useful in controlling complex fluids other than biomembranes.  相似文献   

13.
The successful reconstitution of a tethered BLM on μ-electrodes ranging from 4000 μm to 8 μm is shown in this article. The increase in membrane resistance with decreasing electrode size and the dependency of the membrane capacitance on the electrode size was studied. Furthermore the functional incorporation of α-hemolysin from Staphylococcus aureus into a tBLM situated on μ-electrodes was achieved.  相似文献   

14.
15.
Bullfrog olfactory receptors were reconstituted in bilayer lipid membranes (BLMs). Three odorants were presented to the reconstituted system. The three structurally related odorants were diethylsulfide (DES), thiophene (THP) and diethanolsulfide (DOS). The ordorants were presented in pairs. DOS induced a response in the presence of either of the other two odorants. DES and THP did not induce a response in the presence of either of the other two odorants. These observations suggest that there are two substructures, one common to the three odorants and one that is unique to DOS. The results support the notion that olfactory receptors detect certain molecular segments of odorants.  相似文献   

16.
Dissipative particle dynamics simulations are used to study the specific binding structures of polyamidoamine (PAMAM) dendrimers on amphiphilic membranes and the permeation mechanisms. Mutually consistent coarse-grained (CG) models both for PAMAM dendrimers and for dimyristoylphosphatidylcholine (DMPC) lipid molecules are constructed. The PAMAM CG model describes correctly the conformational behavior of the dendrimers, and the DMPC CG model can properly give the surface tension of the amphiphilic membrane. A series of systematic simulations is performed to investigate the binding structures of the dendrimers on membranes with varied length of the hydrophobic tails of amphiphiles. The permeability of dendrimers across membranes is enhanced upon increasing the dendrimer size (generation). The length of the hydrophobic tails of amphiphiles in turn affects the dendrimer conformation, as well as the binding structure of the dendrimer-membrane complexes. The negative curvature of the membrane formed in the dendrimer-membrane complexes is related to dendrimer concentration. Higher dendrimer concentration together with increased dendrimer generation is observed to enhance the permeability of dendrimers across the amphiphilic membranes.  相似文献   

17.
Protein inclusions in the membranes of living cells interact via the deformations they impose on that membrane. Such membrane-mediated interactions lead to sorting and self-assembly of the inclusions, as well as to membrane remodelling, crucial for many biological processes. For the past decades, theory, numerical calculations and experiments have been using simplified models for proteins to gain quantitative insights into their behaviour. Despite challenges arising from nonlinearities in the equations, the multiple length scales involved and the nonadditive nature of the interactions, recent progress now enables for the first time a direct comparison between theoretical and numerical predictions and experiments. We review the current knowledge on the biologically most relevant case, inclusions on lipid membranes with a closed surface and discuss challenges and opportunities for further progress.  相似文献   

18.
Rehak M  Hall EA 《The Analyst》2004,129(11):1014-1025
BLM prepared on electrode substrates by supporting or tethering were tested for 'pin-hole' character, comparing data from cyclic voltammetry (CV), surface plasmon resonance (SPR) and rotating disc electrodes (RDE). 1-hexadecylamine tethered BLMs on SAM modified gold electrodes were compared with BLMs assembled on modified polyHEMA or sol-gel layers. BLM formation followed by SPR showed that the initial phase of the assembly was complete in 5-20 minutes and produced layers of thickness >5 nm, compared with the expected final BLM thickness of approximately 3 nm. The CVs of the K(3)[Fe(CN)(6)] couple were significantly suppressed irrespective of the method of BLM assembly, without major differences emerging for the different methods. However, data from the RDE distinguished the 'pin-hole' character of the different preparations. The data were consistent with incomplete initial (<1 h, SPR estimated BLM thickness >5 nm) vesicle fusion leaving 'pin-holes' of approximately 2 microm (HDA-11-mercaptoundecanoic acid (MUA) tethered BLM) to approximately 3 microm (tetraethylorthosilicate sol-gel supported BLM) followed by a slow maturation (>15 h; impedance spectroscopy estimated thickness approximately 3 nm) and lateral spreading and fusion, resulting in loss of 'pin-hole' character (<1 microm). The BLM could be used in conjunction with potentiometric measurement to observe the incorporation of nystatin into the BLM and the rate of incorporation adjusted according to original permeability of the BLM. The 'pin-hole-free' BLM construction with lowest permeability (TEOS supported, 4 x 10(-10) cm s(-1) compared with HDA-MUA, 3 x 10(-9) cm s(-1)) gave a potentiometric signal independent of bulk ion-concentration across 5 decades change in concentration. Formed on an ion-selective electrode, nystatin incorporation could be followed as a change in potential, over >2 h, whereas the TEOS supported BLM with permeability 1 x 10(-9) cm s(-1) shows nystatin incorporation within 1 h. In this instance, addition of ConA reduced the potential to the same value as prior to nystatin incorporation, consistent with nystatin channel closure.  相似文献   

19.
Electronic processes and photosensitization in bilayer lipid membranes   总被引:2,自引:0,他引:2  
Abstract— In part one of this paper, evidence for electronic processes in experimental and biological membranes are reviewed. The membrane under consideration, be it experimental or biological, is understood to mean an ultrathin bamer separating two aqueous phases. The question ‘can electronic processes occur in/across such a structure immersed in an aqueous environment?’ is answered affirmatively. In the second part of this paper, photosensitization by dyes and photoelectric effects in experimental bilayer lipid membranes observed recently are described.  相似文献   

20.
We report diffusion coefficients of micron-scale liquid domains in giant unilamellar vesicles of phospholipids and cholesterol. The trajectory of each domain is tracked, and the mean square displacement grows linearly in time, as expected for Brownian motion. We study domain diffusion as a function of composition and temperature and measure how diffusion depends on domain size. We find mechanisms of domain diffusion which are consistent with membrane-dominated drag in viscous L(o) phases and bulk-dominated drag for less viscous L(alpha) phases. Where applicable, we obtain the membrane viscosity and report activation energies of diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号