首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
The stereochemical and energetic compatibility of incorporation of the non-Watson–Crick hydrogen bonded purine–purine base pairs of normal tautomers in the helical structure of B-DNA is studied here. The hydrogen bonding positions of the possible “mispairs” of the bases GA, GG, and AA are optimized first in the base plane by translational and rotational movement along the hydrogen bonds and then introduced at an appropriate position in the DNA structure. The optimum backbone geometries which can accommodate the “mispairs” are obtained by force field computations. The stereochemical and energetic aspects of the various mispairs are discussed in light of their possible incorporation in DNA and as mutational intermediates for the “transversion”-type point mutations.  相似文献   

3.
Excited‐state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double‐stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson–Crick hydrogen bonds. A comparison of single‐ and double‐stranded DNA showed that the reactive charge‐transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson–Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge‐transfer states.  相似文献   

4.
The RNA world hypothesis posits that DNA and proteins were later inventions of early life, or the chemistry that gave rise to life. Most scenarios put forth for the emergence of DNA assume a clean separation of RNA and DNA polymer, and a smooth transition between RNA and DNA. However, based on the reality of “clutter” and lack of sophisticated separation/discrimination mechanisms in a protobiological (and/or prebiological) world, heterogeneous RNA–DNA backbone containing chimeric sequences could have been common—and have not been fully considered in models transitioning from an RNA world to an RNA–DNA world. Herein we show that there is a significant decrease in Watson–Crick duplex stability of the heterogeneous backbone chimeric duplexes that would impede base‐pair mediated interactions (and functions). These results point to the difficulties for the transition from one homogeneous system (RNA) to another (RNA/DNA) in an RNA world with a heterogeneous mixture of ribo‐ and deoxyribonucleotides and sequences, while suggesting an alternative scenario of prebiological accumulation and co‐evolution of homogeneous systems (RNA and DNA).  相似文献   

5.
Recently, a crystal structure has been reported of a new catalytic RNA, the TS ribozyme, that has been identified through comparative genomics and is believed to be a metalloribozyme having novel mechanistic features. Although this data provides invaluable structural information, analysis suggests a conformational change is required to arrive at a catalytically relevant state. We report results of molecular simulations that predict a spontaneous local rearrangement of the active site, leading to solution structures consistent with available functional data and providing competing mechanistic hypotheses that can be experimentally tested. The two competing hypotheses differ in the proposed identity of the catalytic general acid: either a water molecule coordinating a Mg2+ ion bound at the Watson–Crick edge of residue C7, or the N3 position of residue C7 itself.  相似文献   

6.
The principles governing the replication fidelity of genomes are not fully understood yet. Watson and Crick's base-pairing principle for matched deoxyribonucleotide (DNA) bases can explain why the guanine–cytosine and adenine-thymine base pairs are approximately one hundred times more stable thermodynamically than mismatched combinations. In vitro, DNA polymerases reduce the number of mismatched base pairs to about 10?6 per Watson–Crick base pair. Replication fidelity can further be enhanced to a mutation probability of 10?10or less in vivo if optimal conditions for DNA synthesis are provided by polymerase–assisting proteins and DNA-repairing enzymes. The precise reasons for the formation of mismatched base pairs (mispairs), which are responsible for a substantial part of DNA mutations, are still in debate. Although it is agreed that a template-directed “reading” of the hydrogen-substitution pattern in the heterocyclic bases is crucial for proper base pairing during DNA synthesis, it is not clear which type of “misreading” leads to mispairs. Misreading may be due to a non-Watson–Crick base pairing as well as to a change in the hydrogen-substitution pattern, leading to Watson-Crick-like mispairs. The surprising discovery of the selective and quantitative DNA-polymerase-catalyzed formation of a pyridine-pyrimidine base pair (involving a nucleotide base analogue) indicated that rare tautomeric forms in template DNA strands can lead to Watson-Crick-like mispairings that are hardly recognized by the polymerase's proofreading activity. This reveals new pathways for substitution mutations (replication-dependent DNA point mutations) and suggests a new type of mutagen in vivo.  相似文献   

7.
Temporal information about cellular RNA populations is essential to understand the functional roles of RNA. We have developed the hydrazine/NH4Cl/OsO4‐based conversion of 6‐thioguanosine (6sG) into A′, where A′ constitutes a 6‐hydrazino purine derivative. A′ retains the Watson–Crick base‐pair mode and is efficiently decoded as adenosine in primer extension assays and in RNA sequencing. Because 6sG is applicable to metabolic labeling of freshly synthesized RNA and because the conversion chemistry is fully compatible with the conversion of the frequently used metabolic label 4‐thiouridine (4sU) into C, the combination of both modified nucleosides in dual‐labeling setups enables high accuracy measurements of RNA decay. This approach, termed TUC‐seq DUAL, uses the two modified nucleosides in subsequent pulses and their simultaneous detection, enabling mRNA‐lifetime evaluation with unprecedented precision.  相似文献   

8.
Abstract

Specific conformational changes in DNA and RNA can be induced via a transient pentacoordination of the phosphorus atoms in the helix backbone. The details of this conformational transmission mechanism are discussed briefly, using experimental data that were obtained with a set of 5′-pIV and 5′-pV phosphorylated tetrahydrofurfuryl systems. A conformational study on the more realistic model system, the dinucleotide 2 in which a stabilized pentacoordinated phosphorus forms the internucleoside linkage, is presented. Furthermore, it has been found that methylation of the phosphate groups in d(TpTpTpTpTpT) results in the formation of a non-Watson & Crick type parallel duplex DNA structure, in which the two strands are joined via hydrogen bonding between the thymidine bases. Various physico-chemical techniques (e.g. NMR methods and UV hyperchromicity) were used to elucidate the structural details of the parallel duplex. Characteristic properties (parallellity, slimness, symmetry) are presented.  相似文献   

9.
Ultrafast deactivation pathways bestow photostability on nucleobases and hence preserve the structural integrity of DNA following absorption of ultraviolet (UV) radiation. One controversial recovery mechanism proposed to account for this photostability involves electron‐driven proton transfer (EDPT) in Watson–Crick base pairs. The first direct observation is reported of the EDPT process after UV excitation of individual guanine–cytosine (G?C) Watson–Crick base pairs by ultrafast time‐resolved UV/visible and mid‐infrared spectroscopy. The formation of an intermediate biradical species (G[?H]?C[+H]) with a lifetime of 2.9 ps was tracked. The majority of these biradicals return to the original G?C Watson–Crick pairs, but up to 10 % of the initially excited molecules instead form a stable photoproduct G*?C* that has undergone double hydrogen‐atom transfer. The observation of these sequential EDPT mechanisms across intermolecular hydrogen bonds confirms an important and long debated pathway for the deactivation of photoexcited base pairs, with possible implications for the UV photochemistry of DNA.  相似文献   

10.
A novel method for separation of RNA fragments is reported here, based on migrating the polyanionic RNA fragments in a polycationic polyacrylamide gel, made by incorporating positively charged monomers (the Immobilines used for creating immobilized pH gradients) into the neutral polyacrylamide backbone. Separations are typically performed in a 0–10 mM, pK 10.3 Immobiline gradient under denaturing conditions (6 M urea). In the 100–1000 bp length, it is shown that separations of RNA are optimal and very sharp bands can be obtained, in comparison with conventional electrophoresis, due to the “focusing” effect originated by the charge balancing between the positively charged gel matrix and the negatively charged RNA species. Excellent separations are also obtained from micro‐RNAs, single‐stranded RNA molecules of 21–23 nucleotides in length, which appear to regulate gene expression in animal and plant tissues. As a third example, 2‐D runs in control and polycationic gels are shown. Under native conditions, RNAs are not aligned in a diagonal, suggesting that molecular shape has a strong influence on the interaction between RNA and the charged gel matrix. Thus, 2‐D runs in cationic matrices might be exploited for structural studies of RNA molecules.  相似文献   

11.
Cyclohexenyl nucleic acids (CeNA) are characterised by the carbon–carbon double bond replacing the O4′‐oxygen atom of the natural D ‐2′‐deoxyribose sugar ring in DNA. CeNAs exhibit a high conformational flexibility, are stable against nuclease activity and their hybridisation is RNA selective. Additionally, CeNA has been shown to induce an enhanced biological activity when incorporated in siRNA. This makes CeNA a good candidate for siRNA and synthetic aptamer applications. The crystal structure of the synthetic CeNA:RNA hybrid ce(GCGTAGCG):r(CGCUACGC) has been solved with a resolution of 2.50 Å. The CeNA:RNA duplex adopts an anti‐parallel, right‐handed double helix with standard Watson–Crick base pairing. Analyses of the helical parameters revealed the octamer to form an A‐like double helix. The cyclohexenyl rings mainly adopt the 3H2 conformation, which resembles the C3′‐endo conformation of RNA ribose ring. This C3′‐endo ring puckering was found in most of the RNA residues and is typical for A‐family helices. The crystal structure is stabilised by the presence of hexahydrated magnesium ions. The fact that the CeNA:RNA hybrid adopts an A‐type double helical conformation confirms the high potential of CeNAs for the construction of efficient siRNAs which can be used for therapeutical applications.  相似文献   

12.
Metallo‐base pairs have been extensively studied for applications in nucleic acid‐based nanodevices and genetic code expansion. Metallo‐base pairs composed of natural nucleobases are attractive because nanodevices containing natural metallo‐base pairs can be easily prepared from commercially available sources. Previously, we have reported a crystal structure of a DNA duplex containing T? HgII? T base pairs. Herein, we have determined a high‐resolution crystal structure of the second natural metallo‐base pair between pyrimidine bases C? AgI? C formed in an RNA duplex. One AgI occupies the center between two cytosines and forms a C? AgI? C base pair through N3? AgI? N3 linear coordination. The C? AgI? C base pair formation does not disturb the standard A‐form conformation of RNA. Since the C? AgI? C base pair is structurally similar to the canonical Watson–Crick base pairs, it can be a useful building block for structure‐based design and fabrication of nucleic acid‐based nanodevices.  相似文献   

13.
Metallo‐base pairs have been extensively studied for applications in nucleic acid‐based nanodevices and genetic code expansion. Metallo‐base pairs composed of natural nucleobases are attractive because nanodevices containing natural metallo‐base pairs can be easily prepared from commercially available sources. Previously, we have reported a crystal structure of a DNA duplex containing T HgII T base pairs. Herein, we have determined a high‐resolution crystal structure of the second natural metallo‐base pair between pyrimidine bases C AgI C formed in an RNA duplex. One AgI occupies the center between two cytosines and forms a C AgI C base pair through N3 AgI N3 linear coordination. The C AgI C base pair formation does not disturb the standard A‐form conformation of RNA. Since the C AgI C base pair is structurally similar to the canonical Watson–Crick base pairs, it can be a useful building block for structure‐based design and fabrication of nucleic acid‐based nanodevices.  相似文献   

14.
This is a study of adenine–Au and adenine–uracil–Au (neutral, anionic and cationic), applying the B3LYP density-functional approach. In these systems, the interaction is directly related to the charge; so that as the metal atomic charge increases, the bond strength also increases. Neutral molecules are weakly bonded, the interaction in the case of cations is mainly electrostatic and in the case of the anions, the extra electron is localized on the metal atom and consequently, non-conventional hydrogen bonds are formed. In the case of adenine–Au (anion), the H dissociation energy is similar to the electron dissociation energy, and therefore both reactions may be possible. Moreover, the Au anionic atom modifies the hydrogen bonds of the uracil–adenine base pair. This may be significant in the study of point mutations that may occur in the Watson–Crick dimmer of nucleic basis. The electron-donator properties of these compounds are analyzed with the aid of the donator–acceptor map (DAM), previously described. Adenine–Au, uracil–Au and adenine–uracil–Au are more effective electron donors, but poorer electron acceptors than adenine, uracil and adenine–uracil. If the electron acceptor properties of carotenoids such as β-carotene and astaxanthin are compared, there are indications that astaxanthin may act as an oxidant instead of an antioxidant with the uracil–adenine base pair. The oxidation of nucleic acid bases by carotenoids may have important consequences, as oxidative damage of DNA and RNA appears to be linked to cancer. This is something that demands further studies and for this reason, work concerning the reactivity of carotenoids with DNA-nitrogen bases is in progress.  相似文献   

15.
Natural G‐quartets, a cyclic and coplanar array of four guanine residues held together through a Watson–Crick/Hoogsteen hydrogen‐bond network, have received recently much attention due to their involvement in G‐quadruplex DNA, an alternative higher‐order DNA structure strongly suspected to play important roles in key cellular events. Besides this, synthetic G‐quartets (SQ), which artificially mimic native G‐quartets, have also been widely studied for their involvement in nanotechnological applications (i.e., nanowires, artificial ion channels, etc.). In contrast, intramolecular synthetic G‐quartets (iSQ), also named template‐assembled synthetic G‐quartets (TASQ), have been more sparingly investigated, despite a technological potential just as interesting. Herein, we report on a particular iSQ named PNADOTASQ, which demonstrates very interesting properties in terms of DNA and RNA interaction (notably its selective recognition of quadruplexes according to a bioinspired process) and catalytic activities, through its ability to perform peroxidase‐like hemin‐mediated oxidations either in an autonomous fashion (i.e., as pre‐catalyst for TASQzyme reactions) or in conjunction with quadruplex DNA (i.e., as enhancing agents for DNAzyme processes). These results provide a solid scientific basis for TASQ to be used as multitasking tools for bionanotechnological applications.  相似文献   

16.
《Chemical physics》2002,275(1-3):61-74
Using stacks of Watson–Crick base pairs as an important example of multichromophoric molecular assemblies, we studied charge migration in DNA with special emphasis on the mechanism of hole hopping between neighboring guanines (G) connected by the adenine–thymine (AT) bridge. The tight-binding model proposed for this elementary step shows that for short AT bridges, hole transfer between two G bases proceeds via quantum mechanical tunneling. By contrast, hopping over long bridges requires thermal activation. The condition for crossover between tunneling and thermal activation near room temperature is specified and applies to the analysis of experimental data. We show that thermal activation dominates, if the bridge between two G bases contains more than three AT pairs. Our theoretical findings predict that the replacement of AT base pairs by GC pairs increases the efficiency of hole transport only in the case of short base pair sequences. For long sequences, however, the opposite effect is expected.  相似文献   

17.
Solid‐state NMR (ssNMR) is applicable to high molecular‐weight (MW) protein assemblies in a non‐amorphous precipitate. The technique yields atomic resolution structural information on both soluble and insoluble particles without limitations of MW or requirement of crystals. Herein, we propose and demonstrate an approach that yields the structure of protein–RNA complexes (RNP) solely from ssNMR data. Instead of using low‐sensitivity magnetization transfer steps between heteronuclei of the protein and the RNA, we measure paramagnetic relaxation enhancement effects elicited on the RNA by a paramagnetic tag coupled to the protein. We demonstrate that this data, together with chemical‐shift‐perturbation data, yields an accurate structure of an RNP complex, starting from the bound structures of its components. The possibility of characterizing protein–RNA interactions by ssNMR may enable applications to large RNP complexes, whose structures are not accessible by other methods.  相似文献   

18.
Advances in RNA research and RNA nanotechnology depend on the ability to manipulate and probe RNA with high precision through chemical approaches, both in vitro and in mammalian cells. However, covalent RNA labeling methods with scope and versatility comparable to those of current protein labeling strategies are underdeveloped. A method is reported for the site‐ and sequence‐specific covalent labeling of RNAs in mammalian cells by using tRNAIle2‐agmatidine synthetase (Tias) and click chemistry. The crystal structure of Tias in complex with an azide‐bearing agmatine analogue was solved to unravel the structural basis for Tias/substrate recognition. The unique RNA sequence specificity and plastic Tias/substrate recognition enable the site‐specific transfer of azide/alkyne groups to an RNA molecule of interest in vitro and in mammalian cells. Subsequent click chemistry reactions facilitate the versatile labeling, functionalization, and visualization of target RNA.  相似文献   

19.
Substituted Watson–Crick guanine–cytosine (GC) base pairs were recently shown to yield robust three‐state nanoswitches. Here, we address the question: Can such supramolecular switches also be based on Watson–Crick adenine‐thymine (AT) base pairs? We have theoretically analyzed AT pairs in which purine‐C8 and/or pyrimidine‐C6 positions carry a substituent X=NH?, NH2, NH3+ (N series), O?, OH or OH2+ (O series), using the generalized gradient approximation (GGA) of density functional theory at the BP86/TZ2P level. Thus, we explore the trend in geometrical shape and hydrogen bond strengths in AT pairs along a series of stepwise protonations of the substituents. Introducing a charge on the substituents leads to substantial and characteristic changes in the individual hydrogen bond lengths when compared to the neutral AT pair. However, the trends along the series of negative, neutral, and positive substituents are less systematic and less pronounced than for GC. In certain instances, internal proton transfer from thymine to adenine occurs. Our results suggest that AT is a less suitable candidate than GC in the quest for chemically controlled nanoswitches.  相似文献   

20.
In pursuit of small molecules capable of controlling the function of RNA targets, we have explored the RNA binding properties of peptide-acridine conjugates (PACs). In vitro evolution (SELEX) was used to isolate RNAs capable of binding the PAC Ser-Val-Acr-Arg, where Acr is an acridine amino acid. The PAC binds RNA aptamers selectively and with a high degree of discrimination over DNA. PAC binding sites contain the base-paired 5'-CpG-3' sequence, a known acridine intercalation site. However, RNA structure flanking this sequence causes binding affinities to vary over 30-fold. The preferred site (K(D) = 20 nM) contains a base-paired 5'-CpG-3' step flanked on the 5' side by a 4 nt internal loop and the 3' side by a bulged U. Several viral 5'- and 3'-UTR RNA sequences that likely form binding sites for this PAC are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号