首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Demands for large‐scale energy storage systems have driven the development of layered transition‐metal oxide cathodes for room‐temperature rechargeable sodium ion batteries (SIBs). Now, an abnormal layered‐tunnel heterostructure Na0.44Co0.1Mn0.9O2 cathode material induced by chemical element substitution is reported. By virtue of beneficial synergistic effects, this layered‐tunnel electrode shows outstanding electrochemical performance in sodium half‐cell system and excellent compatibility with hard carbon anode in sodium full‐cell system. The underlying formation process, charge compensation mechanism, phase transition, and sodium‐ion storage electrochemistry are clearly articulated and confirmed through combined analyses of in situ high‐energy X‐ray diffraction and ex situ X‐ray absorption spectroscopy as well as operando X‐ray diffraction. This crystal structure engineering regulation strategy offers a future outlook into advanced cathode materials for SIBs.  相似文献   

2.
Room‐temperature sodium‐ion batteries (SIBs) have shown great promise in grid‐scale energy storage, portable electronics, and electric vehicles because of the abundance of low‐cost sodium. Sodium‐based layered oxides with a P2‐type layered framework have been considered as one of the most promising cathode materials for SIBs. However, they suffer from the undesired P2–O2 phase transition, which leads to rapid capacity decay and limited reversible capacities. Herein, we show that this problem can be significantly mitigated by substituting some of the nickel ions with magnesium to obtain Na0.67Mn0.67Ni0.33?xMgxO2 (0≤x≤0.33). Both the reversible capacity and the capacity retention of the P2‐type cathode material were remarkably improved as the P2–O2 phase transition was thus suppressed during cycling. This strategy might also be applicable to the modulation of the physical and chemical properties of layered oxides and provides new insight into the rational design of high‐capacity and highly stable cathode materials for SIBs.  相似文献   

3.
Amorphous iron phosphate (FePO4) has attracted enormous attention as a promising cathode material for sodium‐ion batteries (SIBs) because of its high theoretical specific capacity and superior electrochemical reversibility. Nevertheless, the low rate performance and rapid capacity decline seriously hamper its implementation in SIBs. Herein, we demonstrate a sagacious multi‐step templating approach to skillfully craft amorphous FePO4 yolk–shell nanospheres with mesoporous nanoyolks supported inside the robust porous outer nanoshells. Their unique architecture and large surface area enable these amorphous FePO4 yolk–shell nanospheres to manifest remarkable sodium storage properties with high reversible capacity, outstanding rate performance, and ultralong cycle life.  相似文献   

4.
Among the large energy storage batteries, the sodium ion batteries(SIBs) are attracted huge interest due to the fact of its abundant raw materials and low cost, and has become the most promising secondary battery. Tunnel-type sodium manganese oxides(TMOs) are industrialized cathode materials because of their simple synthesis method and proficient electrochemical performance. Na0.44MnO2(NMO) is considered the best candidate material for all tunnel-type structural materials. ...  相似文献   

5.
Amorphous iron phosphate (FePO4) has attracted enormous attention as a promising cathode material for sodium-ion batteries (SIBs) because of its high theoretical specific capacity and superior electrochemical reversibility. Nevertheless, the low rate performance and rapid capacity decline seriously hamper its implementation in SIBs. Herein, we demonstrate a sagacious multi-step templating approach to skillfully craft amorphous FePO4 yolk–shell nanospheres with mesoporous nanoyolks supported inside the robust porous outer nanoshells. Their unique architecture and large surface area enable these amorphous FePO4 yolk–shell nanospheres to manifest remarkable sodium storage properties with high reversible capacity, outstanding rate performance, and ultralong cycle life.  相似文献   

6.
Sodium-ion batteries (SIBs) have attracted much attention due to their abundance, easy accessibility, and low cost. All of these advantages make them potential candidates for large-scale energy storage. The P2-type layered transition-metal oxides (NaxTMO2; TM=Mn, Co, Ni, Ti, Fe, V, Cr, and a mixture of multiple elements) exhibit good Na+ ion conductivity and structural stability, which make them an excellent choice for the cathode materials of SIBs. Herein, the structural evolution, anionic redox reaction, some challenges, and recent progress of NaxTMO2 cathodes for SIBs are reviewed and summarized. Moreover, a detailed understanding of the relationship of chemical components, structures, phase compositions, and electrochemical performance is presented. This Review aims to provide a reference for the development of P2-type layered transition-metal oxide cathode materials for SIBs.  相似文献   

7.
《中国化学快报》2023,34(1):107443
Due to the abundant sodium reserves and high safety, sodium ion batteries (SIBs) are foreseen a promising future. While, hard carbon materials are very suitable for the anode of SIBs owing to their structure and cost advantages. However, the unsatisfactory initial coulombic efficiency (ICE) is one of the crucial blemishes of hard carbon materials and the slow sodium storage kinetics also hinders their wide application. Herein, with spherical nano SiO2 as pore-forming agent, gelatin and polytetrafluoroethylene as carbon sources, a multi-porous carbon (MPC) material can be easily obtained via a co-pyrolysis method, by which carbonization and template removal can be achieved synchronously without the assistance of strong acids or strong bases. As a result, the MPC anode exhibited remarkable ICE of 83% and a high rate capability (208 mAh/g at 5 A/g) when used in sodium-ion half cells. Additionally, coupling with Na3V2(PO4)3 as the cathode to assemble full cells, the as-fabricated MPC//NVP full cell delivered a good rate capability (146 mAh/g at 5 A/g) as well, implying a good application prospect the MPC anode has  相似文献   

8.
Antimony‐based electrode materials with high specific capacity have aroused considerable interest as anode materials for sodium‐ion batteries (SIBs). Herein, we develop a template‐engaged ion‐exchange method to synthesize Sb2Se3 microclips, and the as‐obtained Sb2Se3 microclips are further in situ coated with polypyrrole (PPy). Benefiting from the structural and compositional merits, these PPy‐coated Sb2Se3 microclips exhibit enhanced sodium‐storage properties in terms of high reversible capacity, superior rate capability, and stable cycling performance.  相似文献   

9.
《中国化学》2017,35(8):1294-1298
Amorphous MnO2 has been prepared from the reduction of KMnO4 in ethanol media by a facile one‐step wet chemical route at room temperature. The electrochemical properties of amorphous MnO2 as cathode material in sodium‐ion batteries (SIBs ) are studied by galvanostatic charge/discharge testing. And the structure and morphologies of amorphous MnO2 are investigated by X‐ray diffraction (XRD ), scanning electron microscopy (SEM ), transmission electron microscopy (TEM ) and Raman spectra. The results reveal that as‐synthesized amorphous MnO2 electrode material exhibits a spherical morphology with a diameter between 20 and 60 nm. The first specific discharge capacity of the amorphous MnO2 electrode is 123.2 mAh •g−1 and remains 136.8 mAh •g−1 after 100 cycles at the current rate of 0.1 C. The specific discharge capacity of amorphous MnO2 is maintained at 139.2, 120.4, 89, 68 and 47 mAh •g−1 at the current rate of 0.1 C, 0.2 C, 0.5 C, 1 C and 2 C, respectively. The results indicate that amorphous MnO2 has great potential as a promising cathode material for SIBs .  相似文献   

10.
《中国化学快报》2023,34(6):107978
Sodium-ion batteries (SIBs) have received significant attention in large-scale energy storage due to their low cost and abundant resources. To obtain high-performance SIBs, many intensive studies about electrode materials have been carried out, especially the cathode material. As various types of cathode material for SIBs, a 3D open framework structural Na3V2(PO4)2F3 (NVPF) with Na superionic conductor (NASICON) structure is a promising cathode material owing to its high operating potential and high energy density. However, its electrochemical properties are severely limited by the poor electronic conductivity due to the insulated [PO4] tetrahedral unit. In this review, the challenges and strategies for NVPF are presented, and the synthetic strategy for NVPF is also analyzed in detail. Furthermore, recent developments of modification research to enhance their electrochemical performance are discussed, including designing the crystal structure, adjusting the electrode structure, and optimizing the electrolyte components. Finally, further research and application for future development of NVPF are prospected.  相似文献   

11.
Herein, we introduce a 4.0 V class high-voltage cathode material with a newly recognized sodium superionic conductor (NASICON)-type structure with cubic symmetry (space group P213), Na3V(PO3)3N. We synthesize an N-doped graphene oxide-wrapped Na3V(PO3)3N composite with a uniform carbon coating layer, which shows excellent rate performance and outstanding cycling stability. Its air/water stability and all-climate performance were carefully investigated. A near-zero volume change (ca. 0.40 %) was observed for the first time based on in situ synchrotron X-ray diffraction, and the in situ X-ray absorption spectra revealed the V3.2+/V4.2+ redox reaction with high reversibility. Its 3D sodium diffusion pathways were demonstrated with distinctive low energy barriers. Our results indicate that this high-voltage NASICON-type Na3V(PO3)3N composite is a competitive cathode material for sodium-ion batteries and will receive more attention and studies in the future.  相似文献   

12.
Sodium/potassium-ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large-size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP-C-2 composite represents exceedingly impressive electrochemical performance for both sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long-term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2-based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP-C-2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs.  相似文献   

13.
随着二次电池技术的迅速发展,锂离子电池(LIBs)已经成为了当今社会一种重要的储能装置。然而,地壳中锂资源有限、含锂化合物价格昂贵,因此科研工作者正在积极寻找LIBs的替代品。钠离子电池(SIBs)具有与LIBs相似的工作原理,且钠元素在地球上储量更丰富更均匀、价格更低廉,使得SIBs成为了最有希望替代LIBs的新型二次电池体系之一。不过,钠离子半径较大、充放电过程中电极材料的不可逆性更明显等缺点,明显地增加了开发高性能SIBs的难度。因此,寻找具有优异性能的电极材料,成为了当前SIBs研究的难点和重点。钠超离子导体(NASICON)结构材料是一类具有超快钠离子传导能力的化合物,在脱/嵌钠过程中具有离子传导率高、结构稳定等优点,表现出明显的应用潜力。本文将在介绍NASICON材料晶体结构的基础上,重点从过渡金属种类与个数,以及阴离子调控的角度,总结其研究进展,并分析了该类材料面临的主要问题和挑战。  相似文献   

14.
Lithium-ion batteries (LIBs) are widely used in cellphones, laptops, and electric cars owing to their high energy density and long operational lifetime. However, their further deployment in large-scale energy storage systems is restricted by the uneven distribution of lithium resources (~0.0017% (mass fraction, w) in the Earth's crust). Therefore, alternative energy storage systems composed of abundant elements are of urgent need. Recently, sodium-ion batteries (SIBs) have attracted significant attention and are considered to be a potential alternative for next-generation batteries owing to abundant sodium resources (~2.64% (w) of the Earth's crust), suitable potential (−2.71 V), and low cost. SIBs are similar to LIBs in terms of their physical and electrochemical properties. Previous studies have mainly focused on SIB storage materials, including hard carbon, alloys, and hexacyanoferrate, while the safety of SIBs remains largely unexplored. Similar to LIBs, the current electrolytes used in SIBs are mainly composed of flammable organic carbonate solvents (or ether solvents), sodium salts, and functional additives, which pose possible safety issues. Moreover, the chemical activity of sodium is much higher than that of lithium, leading to a higher risk of fire, thermal runaway, and explosion. To overcome this problem, herein we propose a fluorinated non-flammable electrolyte composed of 0.9 mol∙L−1 NaPF6 (sodium hexafluorophosphate) in an intermixture of di-(2, 2, 2 trifluoroethyl) carbonate (TFEC) and fluoroethylene carbonate (FEC) in a 7 : 3 ratio by volume. Its physical and electrochemical properties were studied by ionic conductivity, direct ignition, cyclic voltammetry, and charge/discharge measurements, demonstrating excellent flame-retarding ability and outstanding compatibility with sodium electrodes. The electrochemical tests showed that the Prussian blue cathode retained a capacity of 84 mAh∙g−1 over 50 cycles in the prepared electrolyte, in contrast to the rapid capacity degradation in a flammable conventional carbonate electrolyte (74 mAh∙g−1 with 57% capacity retention after 50 cycles). To test the practical application of the proposed electrolyte, a hard carbon anode was used and exhibited exceptional performance in this system. The enhancement mechanism was further verified by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning emission microscopy (SEM) investigations. Polycarbonate on the surface of the cathode played an important role for the studied electrolyte system. The polycarbonate may originate from FEC decomposition, which can enhance the ionic conductivity of the solid electrolyte interface (SEI) layer and reduce impedance. Hence, we believe that this proposed electrolyte may provide new opportunities for the design of robust and safe SIBs for next-generation applications.  相似文献   

15.
Layered metal oxides have attracted increasing attention as cathode materials for sodium-ion batteries (SIBs). However, the application of such cathode materials is still hindered by their poor rate capability and cycling stability. Here, a facile self-templated strategy is developed to synthesize uniform P2-Na0.7CoO2 microspheres. Due to the unique microsphere structure, the contact area of the active material with electrolyte is minimized. As expected, the P2-Na0.7CoO2 microspheres exhibit enhanced electrochemical performance for sodium storage in terms of high reversible capacity (125 mAh g−1 at 5 mA g−1), superior rate capability and long cycle life (86 % capacity retention over 300 cycles). Importantly, the synthesis method can be easily extended to synthesize other layered metal oxide (P2-Na0.7MnO2 and O3-NaFeO2) microspheres.  相似文献   

16.
Sodium-ion batteries(SIBs) are promising alternatives to lithium-ion batteries(LIBs) for large-scale energy storage considering the abundance and low cost of Na-containing resources. However, the energy density of SIBs has been limited by the typically low specific capacities of traditional intercalation-based cathodes. Metal fluorides, in contrast, can deliver much higher capacities based on multi-electron conversion reactions. Among metal fluorides, CuF2 presents a theoretical speci...  相似文献   

17.
Phosphate cathode materials are practical for use in sodium-ion batteries (SIBs) owing to their high stability and long-term cycle life. In this work, the temperature-dependent properties of the phosphate cathode Na3V2(PO4)2O2F (NVPOF) are studied in a wide temperature range from −25 to 55 °C. Upon cycling at general temperature (above 0 °C), the NVPOF cathode retains an excellent charge/discharge performance, and the rate capability is noteworthy, indicating that NVPOF is a competitive candidate as a temperature-adaptive cathode for SIBs. Upon decreasing the temperature below 0 °C, the cell performance deteriorates, which may be caused by the electrolyte and Na electrode, based on the study of ionic conductivity and electrode kinetics. This work proposes a new breakthrough point for the development of SIBs with high performance over a wide temperature range for advanced power systems.  相似文献   

18.
Sodium-ion batteries (SIBs) are now intensively developed as a cost-effective technology alternative to lithium-ion batteries (LIBs) for large-scale energy storage because of their various advantages such as huge abundance of sodium resources, highly safe and significantly low cost. Among many other cathode materials, layered 3d-transition metal oxides (LTMO-NaxMO2, x ≤ 1 and M = Co, Ni, Mn, Cr, Cu, Fe and V) have gained an enormous interest and attractive attention among researchers because of their low-cost, high energy density and ease of synthesis. In addition, LTMOs offer higher reversible capacities because of relatively lower molecular weights; however, complex phase transformations limit their cycling life. Based on the previous research, it was examined that the crystalline phase of LTMO highly influences the electrochemical performance of SIBs; therefore, this review mainly focuses on the latest advances of various crystalline phases such as P2-type, P3-type, O3-type and biphase/multiphase materials and its strength as well as future prospects and challenges.  相似文献   

19.
近年来,钠离子电池由于资源丰富、价格低廉等特点,逐渐成为储能领域的研究热点。然而,钠离子具有较大的离子半径和较慢的动力学速率,成为制约储钠材料发展的主要因素,而发展高性能的嵌钠正极材料是提高钠离子电池比能量和推进其应用的关键。本文详细综述了目前钠离子电池研究的正极材料体系,包括过渡金属氧化物、聚阴离子类材料、普鲁士蓝类化合物、有机分子和聚合物、非晶材料等,并结合这几年我们课题组在正极方面的研究工作,探讨了材料的结构和电化学性能的关系,分析了提高正极材料可逆容量、电压、结构稳定性的可能途径,为钠离子电池电极材料的发展提供参考。  相似文献   

20.
In sodium-ion batteries (SIBs), the low initial coulombic efficiency (ICE) is commonly induced by irreversible phase conversion and difficult desodiation, especially on transition metal compounds (TMCs). Yet the underlying physicochemical mechanism of poor reaction reversibility is still a controversial issue. Herein, by using in situ transmission electron microscopy and in situ X-ray diffraction, we demonstrate the irreversible conversion of NiCoP@C is caused by the rapid migration of P in carbon layer and preferential formation of isolated Na3P during discharge. By modifying the carbon coating layer, the migration of Ni/Co/P atoms is inhibited, thus the improvement of ICE and cycle stability is realized. The inhibiting of fast atom migration which induces component separation and rapid performance degradation might be applied to a wide range of electrode materials, and guides the development of advanced SIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号