首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the tandem hydroformylation-hydrogenation of alkenes to corresponding alcohols was to design an efficient and stable heterogeneous catalyst. To this end, a series of novel heterogeneous graphitic carbon nitride (g-CN) supported bimetallic Rh−Co nanoparticle catalysts (Rh−Co/g-CN) were prepared and subsequently studied for this one-pot two-step reaction. The lamellar structure makes Rh and Co nanoparticles with diameters of <1 nm and 20 nm, respectively, homogeneously deposited on the surface of g-CN layers, exhibit remarkable conversion of styrene (99.9 %) and chemoselectivity for alcohol (87.8 %). More importantly, Co nanoparticles are found to play an important role in the improvement of the chemoselectivity for alcohol due to the formation of catalytic active species [HCo(CO)y]. Besides the detailed investigation of the catalytic properties of Rh−Co/g-CN under different reaction conditions, the reuse of Rh−Co/g-CN was conducted for five times and no evident decrease in the activity and chemoselectivity was observed. Therefore, we expect that this work could offer an initial insight into g-CN-based heterogeneous catalyst on the tandem hydroformylation-hydrogenation reaction.  相似文献   

2.
N-Salicylidene amino acid Schiff base sodium sulfonate salt, as a tridentate dibasic chelating ligand, was obtained from the common condensation of salicylaldehyde-5-sodium sulfonate with tyrosine (HPST). The internal formed ligand coordinated to Cu2+ ion in an aqueous media affording new Cu (II)-complex (Cu-PST), which characterized by various physico-chemicals spectral tools. The mononuclear complex was evaluated as a homogeneous and heterogeneous catalyst in the (ep)oxidation protocols of 1,2-cyclooctene and benzyl alcohol. Heterogeneously, Cu-PST was immobilized on Fe3O4-SiO2, as nanoparticles. The heterogeneous catalyst was characterized by infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, Brunauer−Emmett−Teller and magnetism. Homogeneously, the temperature, solvent and oxidant influences were examined in the catalytic reactions to realize the best reaction conditions. Cu-catalyst exhibited better catalytic performance in the (ep)oxidation processes homogeneously than that in the heterogeneous phase at 80°C for 2 hr in acetonitrile. Reusability of the homogeneous catalyst was for a maximum of three times in the (ep)oxidation reaction, whereas the heterogeneous catalyst was active for six times. A mechanistic pathway was proposed for both catalysts, comparatively.  相似文献   

3.

Abstract  

A new polymer-supported Cu(II) Schiff base complex has been synthesized and characterized by elemental (including metal) analysis, FT-IR spectroscopy, UV–Vis diffuse reflectance spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The catalytic performance of this complex was evaluated in the epoxidation of styrene in acetonitrile/N,N-dimethylformamide (9:1) mixture with 70% tert-butyl hydroperoxide as an oxidizing agent under liquid phase reaction conditions for selective synthesis of styrene oxide. Suitable reaction conditions have been optimized by considering the effects of various reaction parameters such as temperature, reaction time, solvent, oxidant, catalyst amount, and styrene to hydroperoxide molar ratio for the maximum conversion of styrene as well as selectivity of styrene oxide. We have also investigated the epoxidation reaction of various olefins under the optimized reaction conditions. Comparison between catalytic activities of the polymer-supported Cu(II) Schiff base complex and its homogeneous analogue showed that the polymer-supported catalyst was more active. This heterogeneous complex was reused for five times. The selectivity of the heterogeneous catalyst does not change even after five times of reusing.  相似文献   

4.
Meso‐tetrakis[4‐(methoxycarbonyl)phenyl]porphyrinatopalladium(II) as a palladium organocatalyst was synthesized and then used in aqueous media as a heterogeneous organocatalyst in Suzuki reaction. The prepared organocatalyst was characterized using UV–visible, infrared and NMR spectroscopies. It was found to be an efficient catalyst for Suzuki coupling reaction between phenylboronic acid and a broad range of aryl halides. Mild reaction conditions, water solvent as green media, and easy catalyst separation and reusability are the advantages of the presented method.  相似文献   

5.
An efficient and practical route to 5-alkynyl-1,2,3-triazoles has been developed via heterogeneous tandem CuAAC/alkynylation reaction of organic azides, alkynes and 1-bromoalkynes by using an L-proline-functionalized MCM-41-anchored copper(I) complex [L-Proline-MCM-41-CuCl] as catalyst under mild conditions. The reaction produces a wide variety of 5-alkynyl-1,2,3-triazoles in mostly good to excellent yields. The new immobilized copper(I) complex can be readily prepared from commercially available and inexpensive reagents and displays the same catalytic activity as CuCl. The L-Proline-MCM-41-CuCl catalyst is also easy to recover via a simple filtration process and can be reused at least seven times without apparent loss of activity.  相似文献   

6.
In this paper, a highly active, air‐ and moisture‐stable and easily recoverable magnetic nanoparticles tethered mesoionic carbene palladium (II) complex (MNPs‐MIC‐Pd) as nanomagnetic catalyst was successfully synthesized by a simplistic multistep synthesis under aerobic conditions using commercially available inexpensive chemicals for the first time. The synthesized MNPs‐MIC‐Pd nanomagnetic catalyst was in‐depth characterized by numerous physicochemical techniques such as FT‐IR, ICP‐AES, FESEM, EDS, TEM, p‐XRD, XPS, TGA and BET surface area analysis. The prepared MNPs‐MIC‐Pd nanomagnetic catalyst was used to catalyze the Suzuki–Miyaura and Mizoroki–Heck cross‐coupling reactions and exhibited excellent catalytic activity for various substrates under mild reaction conditions. Moreover, MNPs‐MIC‐Pd nanomagnetic catalyst could be easily and rapidly recovered by applying an external magnet. The recovered MNPs‐MIC‐Pd nanomagnetic catalyst exhibited very good catalytic activity up to ten times in Suzuki–Miyaura and five times in Mizoroki–Heck cross‐coupling reactions without considerable loss of its catalytic activity. However, MNPs‐MIC‐Pd nanomagnetic catalyst shows notable advantages such as heterogeneous nature, efficient catalytic activity, mild reaction conditions, easy magnetic work up and recyclability.  相似文献   

7.
NiFe2O4 nanoparticles are modified by graphene quantum dots (GQDs) and utilized to stabilize the Cu(II) nanoparticles as a novel magnetically retrievable catalytic system (Cu(II)/GQDs/NiFe2O4) for green formation of 4H‐pyrimido[2,1‐b]benzothiazoles. The prepared catalyst can be isolated assisted by an outer magnet and recovered for five courses without significant reduction in its efficiency. The as‐prepared magnetic heterogeneous nanocomposite was characterized by UV–Vis, FT‐IR, XRD, EDS, VSM, TEM, and ICP. Performing the reactions in environmentally friendly and affordable conditions (water), the low catalyst percentage, high yield of products, short reaction times, and easy workup are the merits of this protocol.  相似文献   

8.
A chiral N,N′‐bis(salicylidene)ethylenediamine (salen) polymer has been prepared by a condensation reaction between a thiophenedisalicyladehyde derivative and (S,S)‐cyclohexane‐1,2‐diamine. This polymeric compound was demonstrated to possess a cyclic structure with two to five repetitive units. The addition of chromium(II) salts led to the generation of a chiral catalyst that could be recovered as an insoluble powder. The performance of this new calixsalen‐type catalyst was examined in various transformations, particularly in its ability to promote nucleophilic epoxide ring opening under heterogeneous conditions. The target products were obtained in high yields and with improved selectivity compared with those obtained by using analogous linear polymers. The arrangement of the catalytic sites in the cyclic structure is probably more suitable for the necessary cooperative bimetallic pathway of this demanding reaction. The catalyst could be successfully recycled. This approach represents the first use of calixsalen complexes under heterogeneous catalytic conditions.  相似文献   

9.
This work deals the synthesis of aryl azides catalyzed by heterogeneous copper (II) complex of 3,5–bis (2–benzothiazolyl) pyridine, [Cu (II)(BTP)(OTf)2], immobilized on chloromethylated polystyrene, [Cu (II)(BTP)(OTf)2]@CMP. The prepared catalyst was characterized by different analytical techniques such as X‐ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (SEM), energy dispersive X–ray spectroscopy (EDX), elemental analysis, and FT‐IR and UV–Vis spectroscopic methods. This catalytic system showed excellent activity in the synthesis of aryl azides by the reaction of aryl halides with sodium azide in the presence of catalytic amounts of [Cu (II)(BTP)(OTf)2]@CMP. Moreover, this unique catalyst could be recovered easily and reused several times without any considerable loss of its catalytic activity.  相似文献   

10.
In this study, copper chromite nanoparticles (CuCr2O4 NPs) were prepared by a simple hydrothermal method. This nanomaterial was found as an efficient heterogeneous catalyst for the synthesis of a new class of [1]benzopyran azo dyes via pseudo-three-component reaction of (E)-1,2-diphenyl-1-diazene with 4-hydroxycoumarin in the ratio 1:2. The aim of the present work was to provide a practical and high yielding protocol that offers several advantages such as simple procedure with an easy work-up, mild reaction conditions, and the use of CuCr2O4 NPs as an efficient and easily recoverable catalyst.  相似文献   

11.
A practical heterogeneous palladium‐catalyzed carbonylative Suzuki coupling of aryl iodides with arylboronic acids under carbon monoxide gas‐free conditions has been developed using a bidentate phosphino‐functionalized magnetic nanoparticle‐immobilized palladium(II) complex as catalyst. Formic acid was utilized as the carbon monoxide source with dicyclohexylcarbodiimide as the activator, and a wide variety of biaryl ketones were generated in moderate to high yields. The new heterogeneous palladium catalyst can be prepared via a simple procedure and can easily be separated from a reaction mixture by simply applying an external magnet and recycled up to 10 times without any loss of activity.  相似文献   

12.
The conversion of soluble polyoxometalate into insoluble polyoxometalate is considered to be one of the major challenges in synthetic organic chemistry. Here, polyoxometalate was bonded to the salt part of an organic branch immobilized on the silica-coated Fe3O4 nanoparticle and characterized using various techniques. The fabricated complex was used as a heterogeneous catalyst in a novel one-pot reaction for synthesis of benzo[4,5]imidazo[1,2-a]pyrimidin-2-ones using aromatic amines, dimethyl acetylenedicarboxylate (DMAD), derivatives of benzaldehyde and 2-aminobenzimidazole in water/ethanol as a green solvent. 21 derivatives of benzo[4,5]imidazo[1,2-a]pyrimidin-2-one were synthesized by this method and fully characterized. The high stability of the catalyst showed that it can be reused for 6 times without decreasing in activity. The combination of new synthetic method, new ferromagnetic heterogeneous nano-catalyst, green solvent and simple separation method were presented in this work.  相似文献   

13.
14.
An efficient and practical route to β‐keto sulfones has been developed through heterogeneous oxidative coupling of oxime acetates with sodium sulfinates by using an MCM‐41‐supported Schiff base‐pyridine bidentate copper (II) complex [MCM‐41‐Sb,Py‐Cu (OAc)2] as the catalyst and oxime acetates as an internal oxidant, followed by hydrolysis. The reaction generates a variety of β‐keto sulfones in good to excellent yields. This new heterogeneous copper (II) catalyst can be easily prepared via a simple procedure from readily available and inexpensive reagents and exhibits the same catalytic activity as Cu (OAc)2. MCM‐41‐Sb,Py‐Cu (OAc)2 is also easy to recover and is recyclable up to eight times with almost consistent activity.  相似文献   

15.
A new generation of N-heterocyclic carbene palladium(II) complexes containing vinyl groups in different positions in the backbone of the N-heterocycle have been developed. The fully characterised monomers were copolymerised with divinylbenzene to fabricate robust polymer supported NHC-PdII complexes and these polymers were applied as heterogeneous catalysts in directed C−H halogenation of arenes with a pyridine-type directing group. The catalysts demonstrated medium-high catalytic activity with up to 90 % conversion and 100 % selectivity in chlorination. They are heterogeneous and recyclable (at least six times) with no significant leaching of palladium in batch mode catalysis. The best catalyst was also applied under continuous flow conditions where it disclosed an exceptional activity (90 % conversion) and 100 % selectivity for the mono-halogenated product for at least six days, with no leaching of palladium, no loss of activity and an ability to maintain the original oxidation state of PdII.  相似文献   

16.
Poly [N-(2-aminoethyl) acrylamido] trimemethyl ammonium chloride was prepared and used as an effective heterogeneous phase-transfer catalyst. This modified polyacrylamide catalyzed nucleophilic displacement of alkyl halides for easy preparation of alkyl thiocyanates, alkyl cyanides, alkyl azides, and alkyl aryl ethers in high yields and short reaction times in organic and aqueous media under two-phase and triphase conditions. The catalyst can be recovered and reused several times.  相似文献   

17.
A heterogeneous catalyst was synthesized by encapsulation of a Keggin‐type heteropolytungstate, potassium dodecatungstocobaltate trihydrate, K5[CoW12O40]·(Co‐POM), into chromium(III) terephthalate (MIL‐101). Encapsulation was achieved via a ‘build bottle around ship’ strategy in aqueous media, following a hydrothermal method. The structure of the resulting crystalline solid was characterized using X‐ray diffraction, correlated with Fourier transform infrared and UV–visible spectroscopy. The metal content was analysed using optical emission spectroscopy. Transmission electron microscopy was used to measure particle size and N2 adsorption in a Brunauer–Emmett–Teller instrument to characterize the specific surface area. The catalytic activity was investigated using methanolysis of epoxides under mild conditions as a test reaction. The turnover frequency of the heterogeneous Co‐POM@MIL‐101 catalyst was more than 20 times higher than that of the homogeneous Co‐POM catalyst. The Co‐POM@MIL‐101 catalyst was reused several times with negligible leaching of Co‐POM and with no considerable loss of its initial efficiency. The simplicity of preparation, extraordinary stability and high reactivity make Co‐POM@MIL‐101 an exceptional catalytic matrix that is easily separable from reaction media.  相似文献   

18.
Inorganic–organic hybrid catalysts 1-POM(M) were prepared by electrostatic interaction between transition metal-substituted polyoxometalates, {[PW11MO39]4? [M?=?Cr(III), Fe(III)], [PW11MO39]5?, [M?=?Mn(II), Co(II), Ni(II), Cu(II), Zn(II)], [PW11VO40]4?}, and branched organic polyammonium, (tris[2-(dimethylammonium)ethyl]-1,3,5-benzenetricarboxylate), and characterized by elemental analyses, UV–vis and FT IR spectroscopic techniques, XRD, SEM, and Thermogravimetric-Differential thermogravimetric analyses. The hybrid material 1-POM(Zn) was an efficient and selective heterogeneous catalyst in the oxidation of benzylic alcohols to their corresponding carbonyl compounds with hydrogen peroxide. The catalyst was reused several times without significant loss of catalytic activity.  相似文献   

19.
Mesoporous heterogeneous santa barbara amorphous (SBA)-15-supported cobalt complex, as a novel nanocatalyst containing N–O chelating Schiff-base ligand was successfully synthesized by the reaction of SBA-15 and Cobalt(II)-Schiff-base complex. The Co(II)-Schiff base complex also was prepared for the first time, by the reaction of pyridoxal 5′-phosphate or PLP (biological active form of vitamin B6), 3-(aminopropyl)-triethoxysilane in methanol that complexation with CoCl2. The subsequent grafting of entitled complex to SBA-15 afforded Co(II)-PLP-Schiff base/SBA-15 mesoporous catalyst. Characterization of the product was carried out with powder X-ray diffraction, Brunauer–Emmett–Teller nitrogen adsorption–desorption, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, atomic absorption spectroscopy, and inductively coupled plasma, Fourier-transform infrared spectroscopy. The results revealed the retention of the textural properties and hexagonally uniform structures of SBA-15 during the grafting procedure. This nanocatalyst was applied successfully for one-pot synthesis of various benzothiazole heterocycles under green conditions. This catalyst is an active, reusable, and stable nanomaterial with no leaching of metal ions to the reaction medium. It was used for the synthesis of desired benzothiazole heterocycles by the cyclo-condensation of aryl-aldehydes with 2-aminothiophenol with good to excellent yields and under green conditions.  相似文献   

20.
A new polymer was prepared from 1,3,5-triformylphloroglucinol (noted as TDTB) and o-phenylenediamine through Schiff base condensation reaction, and palladium (II) was immobilized on the polymer (noted as TbPo-Pd(II)). This process was easy to work-up and cost-effective. The structure and composition of TbPo-Pd(II) were fully characterized by FTIR, TGA, XPS, AAS, SEM, and TEM analyses. Meanwhile, this catalyst showed desired thermal stability and excellent performance in water/methanol system for Suzuki and Sonogashira coupling reactions. In addition, this heterogeneous catalyst can be readily recovered by simple filtration with no appreciable Pd leaching in the reaction. This work provides a powerful protocol for rapid access to asymmetrical biphenyls and aryl alkynes. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2344–2353  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号