首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The formation of excitons in OLEDs is spin dependent and can be controlled by electron‐paramagnetic resonance, affecting device resistance and electroluminescence yield. We explore electrically detected magnetic resonance in the regime of very low magnetic fields (<1 mT). A pronounced feature emerges at zero field in addition to the conventional spin‐ Zeeman resonance for which the Larmor frequency matches that of the incident radiation. By comparing a conventional π‐conjugated polymer as the active material to a perdeuterated analogue, we demonstrate the interplay between the zero‐field feature and local hyperfine fields. The zero‐field peak results from a quasistatic magnetic‐field effect of the RF radiation for periods comparable to the carrier‐pair lifetime. Zeeman resonances are resolved down to 3.2 MHz, approximately twice the Larmor frequency of an electron in Earth's field. However, since reducing hyperfine fields sharpens the Zeeman peak at the cost of an increased zero‐field peak, we suggest that this result may constitute a fundamental low‐field limit of magnetic resonance in carrier‐pair‐based systems. OLEDs offer an alternative solid‐state platform to investigate the radical‐pair mechanism of magnetic‐field effects in photochemical reactions, allowing models of biological magnetoreception to be tested by measuring spin decoherence directly in the time domain by pulsed experiments.  相似文献   

2.
Reported here is an entirely new application of experimental electron density (EED) in the study of magnetic anisotropy of single-molecule magnets (SMMs). Among those SMMs based on one single transition metal, tetrahedral CoII-complexes are prominent, and their large zero-field splitting arises exclusively from coupling between the d and dxy orbitals. Using very low temperature single-crystal synchrotron X-ray diffraction data, an accurate electron density (ED) was obtained for a prototypical SMM, and the experimental d-orbital populations were used to quantify the dxy-d coupling, which simultaneously provides the composition of the ground-state Kramers doublet wave function. Based on this experimentally determined wave function, an energy barrier for magnetic relaxation in the range 193–268 cm−1 was calculated, and is in full accordance with the previously published value of 230 cm−1 obtained from near-infrared spectroscopy. These results provide the first clear and direct link between ED and molecular magnetic properties.  相似文献   

3.
The hypercalins are dearomatized acylphloroglucinols with a pendant complex cyclopentane ring that exhibit activity against several cancer cell lines. We report the first total synthesis of (+)‐hypercalin C employing a convergent strategy that enabled the dissection of the essential structural features required for the observed anticancer activity. A strategic disconnection involving an unusual C –C Suzuki–Miyaura coupling with an α‐bromo enolether also revealed an unexpected C?H activation. This strategy targeted designed analogues along the synthetic route to address particular biological questions. These results support the hypothesis that hypercalin C may act as a proton shuttle with the dearomatized acylphloroglucinol moiety being essential for this activity.  相似文献   

4.
Selective synthesis of higher oxygenates (linear α‐alcohols and α‐aldehydes, C OH) from syngas is highly attractive but remains challenging owing to the low C OH selectivity and low catalytic stability. Herein we introduce a multifunctional catalyst composed of CoMn and CuZnAlZr oxides that dramatically increased the oxygenates selectivity to 58.1 wt %, where more than 92.0 wt % of the produced oxygenates are C OH. Notably, the total selectivity to value‐added chemicals including oxygenates and olefins reached 80.6 wt % at CO conversion of 29.0 % with high stability. The appropriate component proximity can effectively suppress the formation of the undesired C1 products, and the selectively propulsion of reaction network by synergetic effect of different components contributes to the enhanced selectivity to higher oxygenates. This work provides an alternative strategy for the rational design of new catalysts for direct conversion of syngas into higher oxygenates with co‐production of olefins.  相似文献   

5.
A three‐coordinate low‐spin cobalt(I) complex generated using a pincer ligand is presented. Since an empty orbital is sterically exposed at the site trans to the N donor of an acridane moiety, the cobalt(I) center accepts the coordination of various donors such as H2 and PhSiH3 revealing σ‐complex formation. At this low‐spin cobalt(I) site, homolysis of H–H and Si?H bonds preferentially occurs via bimolecular hydrogen atom transfer instead of two‐electron oxidative addition. When the resulting CoII–H species was exposed to N2, H2 evolution readily occurs at ambient conditions. These results suggest single‐electron processes are favored at the structurally rigidified cobalt center.  相似文献   

6.
Decreasing the energy loss is one of the most feasible ways to improve the efficiencies of organic photovoltaic (OPV) cells. Recent studies have suggested that non-radiative energy loss ( ) is the dominant factor that hinders further improvements in state-of-the-art OPV cells. However, there is no rational molecular design strategy for OPV materials with suppressed . Herein, taking molecular surface electrostatic potential (ESP) as a quantitative parameter, we establish a general relationship between chemical structure and intermolecular interactions. The results reveal that increasing the ESP difference between donor and acceptor will enhance the intermolecular interaction. In the OPV cells, the enhanced intermolecular interaction will increase the charge-transfer (CT) state ratio in its hybridization with the local exciton state to facilitate charge generation, but simultaneously result in a larger . These results suggest that finely tuning the ESP of OPV materials is a feasible method to further improve the efficiencies of OPV cells.  相似文献   

7.
Some cyanide-bridged complexes are known for exhibiting slow magnetic relaxation behavior in a light-induced metastable state. Herein, an unexpected reverse effect is observed for the first time in the S= {FeIILS-CoIIILS-FeIIILS} (HS=high spin, LS=low spin) ground state of a novel V-shaped trinuclear cyanide-bridged {Fe2Co} complex. In this complex, light-switchable iron-cobalt charge transfer with repeatable off/on switching of slow magnetic relaxation is discovered upon alternating laser irradiation at 785 and 560 nm. An important characteristic of the present compound is that the S= ground state exhibits slow magnetic relaxation before irradiation, whereas this is accelerated after irradiation. This is different from the typical behavior, where the light-induced metastable state exhibits slow magnetic relaxation.  相似文献   

8.
The first single‐diamond cubic phase in a liquid crystal is reported. This skeletal structure with the space group is formed by self‐assembly of bolaamphiphiles with swallow‐tailed lateral chains. It consists of bundles of π‐conjugated p‐terphenyl rods fused into an infinite network by hydrogen‐bonded spheres at tetrahedral four‐way junctions. We also present a quantitative model relating molecular architecture to the space‐filling requirements of six possible bicontinuous cubic phases, that is, the single‐ and double‐network versions of gyroid, diamond, and “plumber′s nightmare”.  相似文献   

9.
A study of long-lived spin order in chlorothiophene carboxylates at both high and low magnetic fields is presented. Careful sample preparation (removal of dissolved oxygen in solution, chelating of paramagnetic impurities, reduction of convection) allows one to obtain very long-lived singlet order of the two coupled protons in chlorothiophene derivatives, having lifetimes of about 130 s in D2O and 240 s in deuterated methanol, which are much longer than the T1-relaxation times (18 and 30 s, respectively, at a field =9.4 T). In protonated solvents the relaxation times become shorter, but the lifetime is still substantially longer than . In addition, long-lived coherences are shown to have lifetimes as long as 30 s. Thiophene derivatives can be used as molecular tags to study slow transport, slow dynamics and slow chemical processes, as has been shown in recent years.  相似文献   

10.
We report a new molecular-design principle for creating double-gyroid nanostructured molecular assemblies based on atropisomerization. Ionic amphiphiles containing two imidazolium rings close to each other were designed and synthesized. NMR data revealed that the rotation of the imidazolium rings is restricted, with an activation energy as high as 63 kJ mol−1 in DMSO-d6 solution (DFT prediction for a model compound in the vacuum: 90–100 kJ mol−1). Due to the restricted rotation, the amphiphiles feature “double” atropisomeric axes in their ionic segments and form three stable atropisomers: meso, R, and S. These isomers co-organize into -type bicontinuous cubic liquid-crystalline mesophases through nanosegregation of the ionic and non-ionic parts. Considering the intrinsic characteristic of -type bicontinuous cubic structures that they are composed of intertwined right- and left-handed single gyroids, we propose that the simultaneous presence of both R- and S-atropisomers is an important contributor to the formation of double-gyroid structures.  相似文献   

11.
We demonstrate that trimethylamine borane can exhibit desirable piezoelectric and pyroelectric properties. The material was shown to be able operate as a flexible film for both thermal sensing, thermal energy conversion and mechanical sensing with high open circuit voltages (>10 V). A piezoelectric coefficient of d33≈10–16 pC N−1, and pyroelectric coefficient of p≈25.8 μC m−2 K−1 were achieved after poling, with high pyroelectric figure of merits for sensing and harvesting, along with a relative permittivity of 6.3.  相似文献   

12.
The calculation of magnetic transition dipole moments and rotatory strengths was implemented at the zeroth-order regular approximation (ZORA) two-component relativistic time-dependent density functional theory (TDDFT) level. The circular dichroism of the spin-forbidden ligand-field transitions of tris(ethylenediamine)cobalt(III) computed in this way agrees very well with available measurements. Phosphorescence dissymmetry factors and the corresponding lifetimes are evaluated for three N-heterocyclic-carbene-based iridium complexes, two of which contain helicene moieties, and for two platinahelicenes. The agreement with experimental data is satisfactory. The calculations reproduce the signs and order of magnitude of , and the large variations of phosphorescence lifetimes among the systems. The electron spin contribution to the magnetic transition dipole moment is shown to be important in all of the computations.  相似文献   

13.
Smythite ( ) is an iron-based chalcogenide with a lamellar structure, different from the compositionally identical mineral greigite. Owing to their natural abundance, such transition metal chalcogenides are promising materials for low-cost spintronic-based devices. Herein, we discuss the charge transfer processes and complex magnetic ordering in a two-dimensional (2D) smythite lattice. We find that redox couple and complex magnetic ordering are governing factors in the charge transfer processes. A very strong ferromagnetic in-lattice coupling is also observed, which is attributed to the presence of three Fe-centres. To describe the magnetic behaviour molecular and periodic approaches have been considered. We found a substantial increase in Curie temperature with applied mechanical stress due to opening of the double exchange interaction angle. We also observe an in-plane Jahn−Teller distortion, which is further confirmed by the spin−orbit counter plot. Our study thus provides an insight into the double exchange mechanism favoured by the redox couple and results in a strong ferromagnetic ordering.  相似文献   

14.
The dioxygen reactivity of a series of TMPA‐based copper(I) complexes (TMPA=tris(2‐pyridylmethyl)amine), with and without secondary‐coordination‐sphere hydrogen‐bonding moieties, was studied at ?135 °C in 2‐methyltetrahydrofuran (MeTHF). Kinetic stabilization of the H‐bonded [( TMPA)CuII(O2.?)]+ cupric superoxide species was achieved, and they were characterized by resonance Raman (rR) spectroscopy. The structures and physical properties of [( TMPA)CuII(N3?)]+ azido analogues were compared, and the O2.? reactivity of ligand–CuI complexes when an H‐bonding moiety is replaced by a methyl group was contrasted. A drastic enhancement in the reactivity of the cupric superoxide towards phenolic substrates as well as oxidation of substrates possessing moderate C?H bond‐dissociation energies is observed, correlating with the number and strength of the H‐bonding groups.  相似文献   

15.
This work describes a homometallic spin- tetrabromocuprate adopting a bilayer structure. Magnetic-susceptibility measurements show a broad maximum centred near 70 K, with fits to this data using a Heisenberg model consistent with strong antiferromagnetic coupling between neighbouring copper atoms in different layers of the bilayer. There are further weak intralayer ferromagnetic interactions between copper cations in neighbouring dimers. First-principles calculations are consistent with this, but suggest there is only significant magnetic coupling within one direction of a layer; this would suggest the presence of a spin ladder within the bilayer with antiferromagnetic rung and weaker ferromagnetic rail couplings.  相似文献   

16.
17.
Magic‐angle spinning (MAS) is an essential ingredient in a wide variety of solid‐state NMR experiments. The standard procedures to adjust the rotor angle are not highly accurate, resulting in a slight misadjustment of the rotor from the magic angle ( ) on the order of a few millidegrees. This small missetting has no significant impact on the overall spectral resolution, but is sufficient to reintroduce anisotropic interactions. Shown here is that site‐specific 1H‐15N dipolar couplings can be accurately measured in a heavily deuterated protein. This method can be applied at arbitrarily high MAS frequencies, since neither rotor synchronization nor particularly high radiofrequency field strengths are required. The off‐MAS method allows the quantification of order parameters for very dynamic residues, which often escape an analysis using existing methods.  相似文献   

18.
Molecular platforms are regarded as promising candidates in the generation of units of information for quantum computing. Herein, a strategy combining spin-crossover metal ions and radical ligands is proposed from a model Hamiltonian first restricted to exchange interactions. Unusual spin states structures emerge from the linkage of a singlet/triplet commutable metal centre with two doublet-radical ligands. The ground state nature is modulated by charge transfers and can exhibit a mixture of triplet and singlet local metal spin states. Besides, the superposition reaches a maximum for , suggesting a necessary competition between the intramolecular and inter-metal-ligand and direct exchange interactions. The results promote spinmerism, an original manifestation of quantum entanglement between the spin states of a metal centre and radical ligands. The study provides insights into spin-coupled compounds and inspiration for the development of molecular spin-qubits.  相似文献   

19.
Selective C –C couplings are powerful strategies for the rapid and programmable construction of bi- or multiaryls. To this end, the next frontier of synthetic modularity will likely arise from harnessing the coupling space that is orthogonal to the powerful Pd-catalyzed coupling regime. This report details the realization of this concept and presents the fully selective arylation of aryl germanes (which are inert under Pd0/PdII catalysis) in the presence of the valuable functionalities C−BPin, C−SiMe3, C−I, C−Br, C−Cl, which in turn offer versatile opportunities for diversification. The protocol makes use of visible light activation combined with gold catalysis, which facilitates the selective coupling of C−Ge with aryl diazonium salts. Contrary to previous light-/gold-catalyzed couplings of Ar–N2+, which were specialized in Ar–N2+ scope, we present conditions to efficiently couple electron-rich, electron-poor, heterocyclic and sterically hindered aryl diazonium salts. Our computational data suggest that while electron-poor Ar–N2+ salts are readily activated by gold under blue-light irradiation, there is a competing dissociative deactivation pathway for excited electron-rich Ar–N2+, which requires an alternative photo-redox approach to enable productive couplings.  相似文献   

20.
3D well-crystallized metal–organic frameworks (MOFs), M-THBQ (M=Fe, Co, Mn, THBQ=tetrahydroxybenzoquinone), are synthesized and characterized. Their structures are determined as cubic cell in the group of Pm from powder X-ray diffraction data, and their properties of electronic, magnetic and spectroscopic are also investigated. They are all semiconductors, and Fe-THBQ exhibits the air-stable n-type thermoelectric characteristic as its Seebeck coefficient reaches −130 μV K−1, and the electrical conductivity is 2.7×10−4 S cm−1 at 300 K. Additional, M-THBQ are paramagnetic, and the value of Weiss constant of Fe-THBQ is −219.37 K, indicating the existence of robust intramolecular antiferromagnetic exchanges. Meanwhile, they display strong absorption bands in the range of 220 to 1000 nm, suggest M-THBQ could have the potential to become photoabsorbers, and Fe-THBQ exhibits a narrow band gap of 0.63 eV according to the ultraviolet absorption edge spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号