首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenocysteine (Sec, U) confers new chemical properties on proteins. Improved tools are thus required that enable Sec insertion into any desired position of a protein. We report a facile method for synthesizing selenoproteins with multiple Sec residues by expanding the genetic code of Escherichia coli. We recently discovered allo‐tRNAs, tRNA species with unusual structure, that are as efficient serine acceptors as E. coli tRNASer. Ser‐allo‐tRNA was converted into Sec‐allo‐tRNA by Aeromonas salmonicida selenocysteine synthase (SelA). Sec‐allo‐tRNA variants were able to read through five UAG codons in the fdhF mRNA coding for E. coli formate dehydrogenase H, and produced active FDHH with five Sec residues in E. coli. Engineering of the E. coli selenium metabolism along with mutational changes in allo‐tRNA and SelA improved the yield and purity of recombinant human glutathione peroxidase 1 (to over 80 %). Thus, our allo‐tRNAUTu system offers a new selenoprotein engineering platform.  相似文献   

2.
Here we report the ribosomal polymerization of alpha-hydroxy acids by means of genetic code reprogramming. The flexizyme system, a ribozyme-based tRNA acylation tool, was used to re-assign individual codons to seven types of alpha-hydroxy acids, and then polyesters were synthesized under controls of the reprogrammed genetic code using a reconstituted cell-free translation system. The sequence and length of the polyester segments were specified by the mRNA template, indicating that high-fidelity ribosome expression of polyesters was possible. This work opens a door for the mRNA-directed synthesis of backbone-altered biopolymers.  相似文献   

3.
Expanding the eukaryotic genetic code to include unnatural amino acids with novel properties would provide powerful tools for manipulating protein function in eukaryotic cells. Toward this goal, a general approach with potential for isolating aminoacyl-tRNA synthetases that incorporate unnatural amino acids with high fidelity into proteins in Saccharomyces cerevisiae is described. The method is based on activation of GAL4-responsive HIS3, URA3, or lacZ reporter genes by suppression of amber codons in GAL4. The optimization of GAL4 reporters is described, and the positive and negative selection of active Escherichia coli tyrosyl-tRNA synthetase (EcTyrRS)/tRNA(CUA) is demonstrated. Importantly, both selections can be performed on a single cell and with a range of stringencies. This method will facilitate the isolation of a range of aminoacyl-tRNA synthetase (aaRS)/tRNA(CUA) activities from large libraries of mutant synthetases.  相似文献   

4.
Phage display is a powerful approach for evolving proteins and peptides with new functions, but the properties of the molecules that can be evolved are limited by the chemical diversity encoded. Herein, we report a system for incorporating non‐canonical amino acids (ncAAs) into proteins displayed on phage using the pyrrolysyl‐tRNA synthetase/tRNA pair. We improve the efficiency of ncAA incorporation using an evolved orthogonal ribosome (riboQ1), and encode a cyclopropene‐containing ncAA (CypK) at diverse sites on a displayed single‐chain antibody variable fragment (ScFv), in response to amber and quadruplet codons. CypK and an alkyne‐containing ncAA are incorporated at distinct sites, enabling the double labeling of ScFv with distinct probes, through mutually orthogonal reactions, in a one‐pot procedure. These advances expand the number of functionalities that can be encoded on phage‐displayed proteins and provide a foundation to further expand the scope of phage display applications.  相似文献   

5.
Over the last decade, the ability to genetically encode unnatural amino acids (UAAs) has evolved rapidly. The programmed incorporation of UAAs into recombinant proteins relies on the reassignment or suppression of canonical codons with an amino-acyl tRNA synthetase/tRNA (aaRS/tRNA) pair, selective for the UAA of choice. In order to achieve selective incorporation, the aaRS should be selective for the designed tRNA and UAA over the endogenous amino acids and tRNAs. Enhanced selectivity has been achieved by transferring an aaRS/tRNA pair from another kingdom to the organism of interest, and subsequent aaRS evolution to acquire enhanced selectivity for the desired UAA. Today, over 150 non-canonical amino acids have been incorporated using such methods. This enables the introduction of a large variety of structures into proteins, in organisms ranging from prokaryote, yeast and mammalian cells lines to whole animals, enabling the study of protein function at a level that could not previously be achieved. While most research to date has focused on the suppression of ‘non-sense’ codons, recent developments are beginning to open up the possibility of quadruplet codon decoding and the more selective reassignment of sense codons, offering a potentially powerful tool for incorporating multiple amino acids. Here, we aim to provide a focused review of methods for UAA incorporation with an emphasis in particular on the different tRNA synthetase/tRNA pairs exploited or developed, focusing upon the different UAA structures that have been incorporated and the logic behind the design and future creation of such systems. Our hope is that this will help rationalize the design of systems for incorporation of unexplored unnatural amino acids, as well as novel applications for those already known.  相似文献   

6.
7.
The characterization of low‐affinity protein complexes is challenging due to their dynamic nature. Here, we present a method to stabilize transient protein complexes in vivo by generating a covalent and conformationally flexible bridge between the interaction partners. A highly active pyrrolysyl tRNA synthetase mutant directs the incorporation of unnatural amino acids bearing bromoalkyl moieties (BrCnK) into proteins. We demonstrate for the first time that low‐affinity protein complexes between BrCnK‐containing proteins and their binding partners can be stabilized in vivo in bacterial and mammalian cells. Using this approach, we determined the crystal structure of a transient GDP‐bound complex between a small G‐protein and its nucleotide exchange factor. We envision that this approach will prove valuable as a general tool for validating and characterizing protein–protein interactions in vitro and in vivo.  相似文献   

8.
tRNA is the adaptor in the translation process. The ribosome has three sites for tRNA, the A-, P-, and E-sites. The tRNAs bridge between the ribosomal subunits with the decoding site and the mRNA on the small or 30S subunit and the peptidyl transfer site on the large or 50S subunit. The possibility that translation release factors could mimic tRNA has been discussed for a long time, since their function is very similar to that of tRNA. They identify stop codons of the mRNA presented in the decoding site and hydrolyse the nascent peptide from the peptidyl tRNA in the peptidyl transfer site. The structures of eubacterial release factors are not yet known, and the first example of tRNA mimicry was discovered when elongation factor G (EF-G) was found to have a closely similar shape to a complex of elongation factor Tu (EF-Tu) with aminoacyl-tRNA. An even closer imitation of the tRNA shape is seen in ribosome recycling factor (RRF). The number of proteins mimicking tRNA is rapidly increasing. This primarily concerns translation factors. It is now evident that in some sense they are either tRNA mimics, GTPases or possibly both.  相似文献   

9.
Highly porous spherical polymer gels were modified with formyl groups by a modified Friedel-Crafts reaction and the interaction of serum proteins with the modified gels were examined by pulse injection analysis. The introduction of formyl groups into the polymer greatly increases its protein-binding capacity, and the protein bound to the gel is not eluted by washing with acid, alkali or urea solution. The effects of temperature and the percentage of formyl group substitution on the binding capacity indicate that the binding process can be interpreted as initial approach of the protein to the polymer surface, caused by the hydrophobic interaction, followed by formation of a stable Schiff base between the polymer gel and the protein. Theoretical treatment of the elution behaviour of the protein from the polymer-packed column is also examined, with the assumption that there are three kinds of binding site in the polymer gel: surface, macropore and micropore regions. These polymers are shown to be useful for the removal of proteins from biological samples in clinical assays using immobilized enzymes.  相似文献   

10.
Formylation is an important part of ribosomal peptide synthesis of prokaryotes. In nonribosomal peptide synthesis, however, N-formylation is rather unusual and therefore so far unexplored. In this work, the first module of the linear gramicidin nonribosomal peptide synthetase, LgrA1, consisting of a hypothetical formylation domain, an adenylation, and a peptidyl carrier protein domain was tested for formyltransferase activity in vitro. We demonstrate here that the putative formylation domain does indeed transfer the formyl group of formyltetrahydrofolate (fH4F) onto the first amino acid valine using both cofactors N10- and N5-fH4F, respectively. Most important, the necessity of the formylated starter unit formyl-valine for the initiation of the gramicidin biosynthesis was tested by elongation assays with the bimodular system from LgrA. By omitting the formyl group donor, no condensation product of valine with the subsequent building block glycine was detected, whereas the dipeptide formyl-valyl-glycine was found when assayed in the presence of either formyl donor. The proven formylation activity of the first domain of LgrA represents a novel tailoring enzyme in nonribosomal peptide synthesis.  相似文献   

11.
The enzyme tRNA‐guanine transglycosylase, a target to fight Shigellosis, recognizes tRNA only as a homodimer and performs full nucleobase exchange at the wobble position. Active‐site inhibitors block the enzyme function by competitively replacing tRNA. In solution, the wild‐type homodimer dissociates only marginally, whereas mutated variants show substantial monomerization in solution. Surprisingly, one inhibitor transforms the protein into a twisted state, whereby one monomer unit rotates by approximately 130°. In this altered geometry, the enzyme is no longer capable of binding and processing tRNA. Three sugar‐type inhibitors have been designed and synthesized, which bind to the protein in either the functionally competent or twisted inactive state. They crystallize with the enzyme side‐by‐side under identical conditions from the same crystallization well. Possibly, the twisted inactive form corresponds to a resting state of the enzyme, important for its functional regulation.  相似文献   

12.
Natural peptide products often contain N-methylated backbones, and such a modification plays a crucial role in making natural peptides peptidase resistant and membrane permeable. Here, we demonstrate the ribosomal synthesis of N-methyl-peptides by means of genetic code reprogramming. Two key technologies, a ribozyme-based de novo tRNA acylation (flexizyme) system and an E. coli reconstituted cell-free translation (PURE) system, were used in order to reassign arbitrarily chosen codons to N(alpha)-methylated amino acids ((Me)aa). Using this combination, we determined the general structural requirement of "accessible"(Me)aa and demonstrated their multiple incorporations into the nascent peptide chain according to the assignments made on mRNA, giving linear and cyclic N-methyl-peptides in high purities. This platform technology offers a convenient tool for the construction of N-methyl-peptide libraries, potentially leading to the discovery of therapeutic peptides.  相似文献   

13.
The chaetognaths constitute a small and enigmatic phylum of little marine invertebrates. Both nuclear and mitochondrial genomes have numerous originalities, some phylum-specific. Until recently, their mitogenomes seemed containing only one tRNA gene (trnMet), but a recent study found in two chaetognath mitogenomes two and four tRNA genes. Moreover, apparently two conspecific mitogenomes have different tRNA gene numbers (one and two). Reanalyses by tRNAscan-SE and ARWEN softwares of the five available complete chaetognath mitogenomes suggest numerous additional tRNA genes from different types. Their total number never reaches the 22 found in most other invertebrates using that genetic code. Predicted error compensation between codon-anticodon mismatch and tRNA misacylation suggests translational activity by tRNAs predicted solely according to secondary structure for tRNAs predicted by tRNAscan-SE, not ARWEN. Numbers of predicted stop-suppressor (antitermination) tRNAs coevolve with predicted overlapping, frameshifted protein coding genes including stop codons. Sequence alignments in secondary structure prediction with non-chaetognath tRNAs suggest that the most likely functional tRNAs are in intergenic regions, as regular mt-tRNAs. Due to usually short intergenic regions, generally tRNA sequences partially overlap with flanking genes. Some tRNA pairs seem templated by sense-antisense strands. Moreover, 16S rRNA genes, but not 12S rRNAs, appear as tRNA nurseries, as previously suggested for multifunctional ribosomal-like protogenomes.  相似文献   

14.
Chemical modifications of tRNAs are critical for accurate translation of the genetic code on the ribosome. The discrimination between isoleucine (AUA) and methionine (AUG) codons depends on such modifications of the wobble position in isoleucine tRNA anticodon loops, in all kingdoms of life. Bacteria and archaea employ functionally similar lysine‐ and agmatine‐conjugated cytidine derivatives to ensure decoding fidelity, but the thermodynamics underlying codon discrimination remains unknown. Here, we report structure‐based computer simulations that quantitatively reveal the energetics of this decoding strategy in archaea. The results further show that the agmatidine modification confers tRNA specificity primarily by desolvation of the incorrect codon in the non‐cognate complex. Tautomerism is found to play no significant role in this decoding system as the usual amino form of the modified tRNA is by far the most stable.  相似文献   

15.
BACKGROUND: The addition of new amino acids to the genetic code of Escherichia coli requires an orthogonal suppressor tRNA that is uniquely acylated with a desired unnatural amino acid by an orthogonal aminoacyl-tRNA synthetase. A tRNA(Tyr)(CUA)-tyrosyl-tRNA synthetase pair imported from Methanococcus jannaschii can be used to generate such a pair. In vivo selections have been developed for selecting mutant suppressor tRNAs with enhanced orthogonality, which can be used to site-specifically incorporate unnatural amino acids into proteins in E. coli. RESULTS: A library of amber suppressor tRNAs derived from M. jannaschii tRNA(Tyr) was generated. tRNA(Tyr)(CUA)s that are substrates for endogenous E. coli aminoacyl-tRNA synthetases were deleted from the pool by a negative selection based on suppression of amber nonsense mutations in the barnase gene. The remaining tRNA(Tyr)(CUA)s were then selected for their ability to suppress amber nonsense codons in the beta-lactamase gene in the presence of the cognate M. jannaschii tyrosyl-tRNA synthetase (TyrRS). Four mutant suppressor tRNAs were selected that are poorer substrates for E. coli synthetases than M. jannaschii tRNA(Tyr)(CUA), but still can be charged efficiently by M. jannaschii TyrRS. CONCLUSIONS: The mutant suppressor tRNA(Tyr)(CUA) together with the M. jannaschii TyrRS is an excellent orthogonal tRNA-synthetase pair for the in vivo incorporation of unnatural amino acids into proteins. This general approach may be expanded to generate additional orthogonal tRNA-synthetase pairs as well as probe the interactions between tRNAs and their cognate synthetases.  相似文献   

16.
A major challenge in nanomaterial science is to develop approaches that ensure that when administered in vivo, nanoparticles can be targeted to their requisite site of action. Herein we report the first approach that allows for cell-specific uptake of nanomaterials by a process involving reprogramming of the behavior of the ubiquitous protein corona of nanomaterials. Specifically, judicious surface modification of quantum dots with a small molecule that induces a protein-misfolding event in a component of the nanoparticle-associated protein corona renders the associated nanomaterials susceptible to cell-specific, receptor-mediated endocytosis. We see this chemical approach as a new and general method for exploiting the inescapable protein corona to target nanomaterials to specific cells.  相似文献   

17.
18.
The incorporation of non‐proteinogenic amino acids represents a major challenge for the creation of functionalized proteins. The ribosomal pathway is limited to the 20–22 proteinogenic amino acids while nonribosomal peptide synthetases (NRPSs) are able to select from hundreds of different monomers. Introduced herein is a fusion‐protein‐based design for synthetic tRNA‐aminoacylation catalysts based on combining NRPS adenylation domains and a small eukaryotic tRNA‐binding domain (Arc1p‐C). Using rational design, guided by structural insights and molecular modeling, the adenylation domain PheA was fused with Arc1p‐C using flexible linkers and achieved tRNA‐aminoacylation with both proteinogenic and non‐proteinogenic amino acids. The resulting aminoacyl‐tRNAs were functionally validated and the catalysts showed broad substrate specificity towards the acceptor tRNA. Our strategy shows how functional tRNA‐aminoacylation catalysts can be created for bridging the ribosomal and nonribosomal worlds. This opens up new avenues for the aminoacylation of tRNAs with functional non‐proteinogenic amino acids.  相似文献   

19.
Site-specific incorporation of multiple distinct noncanonical amino acids (ncAAs) into proteins in mammalian cells is a promising technology, where each ncAA must be assigned to a different orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pair that reads a distinct nonsense codon. Available pairs suppress TGA or TAA codons at a considerably lower efficiency than TAG, limiting the scope of this technology. Here we show that the E. coli tryptophanyl (EcTrp) pair is an excellent TGA-suppressor in mammalian cells, which can be combined with the three other established pairs to develop three new routes for dual-ncAA incorporation. Using these platforms, we site-specifically incorporated two different bioconjugation handles into an antibody with excellent efficiency, and subsequently labeled it with two distinct cytotoxic payloads. Additionally, we combined the EcTrp pair with other pairs to site-specifically incorporate three distinct ncAAs into a reporter protein in mammalian cells.  相似文献   

20.
A new approach to the assembly and photochemical disassembly of molecular hosts is developed. It is based on photoinduced fragmentation in hydroxyalkyl dithianes and utilizes a novel spiro-bis-dithiane as a photolabile molecular tether to link two formylated macromolecular blocks, e.g., formyl calixarenes or formyl dibenzocrown ethers. A key feature of this molecular system is that after an assembly-disassembly cycle the starting macromolecular blocks are recovered intact and can be used again.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号