首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The practical implementation of lithium–sulfur batteries is obstructed by poor conductivity, sluggish redox kinetics, the shuttle effect, large volume variation, and low areal loading of sulfur electrodes. Now, amorphous N‐doped carbon/MoS3 (NC/MoS3) nanoboxes with hollow porous architectures have been meticulously designed as an advanced sulfur host. Benefiting from the enhanced conductivity by the N‐doped carbon, reduced shuttle effect by the strong chemical interaction between unsaturated Mo and lithium polysulfides, improved redox reaction kinetics by the catalytic effect of MoS3, great tolerance of volume variation and high sulfur loading arising from flexible amorphous materials with hollow‐porous structures, the amorphous NC/MoS3 nanoboxes enabled sulfur electrodes to deliver a high areal capacity with superior rate capacity and decent cycling stability. The synthetic strategy can be generalized to fabricate other amorphous metal sulfide nanoboxes.  相似文献   

2.
Nitrogen-doped (N-doped) carbon encapsulation of CoFe2O4 nanocrystalline is achieved by a simple pressure-assisted pyrrole pyrolysis method. The CoFe2O4/N-doped carbon nanocomposite (CFO/NC) delivers a capacity of 646.2 mAh g–1 after 80 cycles at 0.1 C, exhibits stable cycling performance at various rates from 0.2 to 1.6 C and retains a capacity of 662.8 mAh g–1 as the rate returns back to 0.1 C, showing significantly improved lithium storage reversibility compared to the bare CFO. A different lithiation mechanism of CFO/NC above and below the plateau relative to CFO in the first discharge is analyzed in detail based on the potential profiles and cyclic voltammogram curves. Morphology characterization of the cycled electrodes confirms much better integrity of CFO/NC electrode due to the buffer effect of N-doped carbon coating. Electronic conductivity and electrochemical impedance spectroscopy measurements indicate enhanced electrode reaction kinetics of CFO/NC. All the results contribute to its improved electrochemical performance.  相似文献   

3.
Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium–sulfur (Li-S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li-S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core–shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm−2) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm−2) with a low electrolyte/sulfur ratio (10 μL mg−1). This research further demonstrates a durable Li-Se/S pouch cell with high specific capacity, validating the potential practical applications.  相似文献   

4.
Molybdenum disulfide (MoS2) has received considerable interest for electrochemical energy storage and conversion. In this work, we have designed and synthesized a unique hybrid hollow structure by growing ultrathin MoS2 nanosheets on N‐doped carbon shells (denoted as C@MoS2 nanoboxes). The N‐doped carbon shells can greatly improve the conductivity of the hybrid structure and effectively prevent the aggregation of MoS2 nanosheets. The ultrathin MoS2 nanosheets could provide more active sites for electrochemical reactions. When evaluated as an anode material for lithium‐ion batteries, these C@MoS2 nanoboxes show high specific capacity of around 1000 mAh g?1, excellent cycling stability up to 200 cycles, and superior rate performance. Moreover, they also show enhanced electrocatalytic activity for the electrochemical hydrogen evolution.  相似文献   

5.
Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium–sulfur (Li‐S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li‐S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core–shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm?2) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm?2) with a low electrolyte/sulfur ratio (10 μL mg?1). This research further demonstrates a durable Li‐Se/S pouch cell with high specific capacity, validating the potential practical applications.  相似文献   

6.
Lithium–sulfur batteries (LSBs) still suffer from the shuttle effect on the cathode and the lithium dendrite on the anode. Herein, polyacrylonitrile (PAN) is developed into a bifunctional host material to simultaneously address the challenges faced on both the sulfur cathode and lithium anode in LSBs. For the sulfur cathode, PAN is bonded with sulfur to produce sulfurized PAN (SPAN) to avoid the shuttle effect. The SPAN is accommodated into a conductive 3D CNTs-wrapped carbon foam to prepare a self-supporting cathode, which improves the electronic and ionic conductivity, and buffers the volume expansion. Thereby, it delivers reversible capacity, superb rate capability, and outstanding cycling stability. For the Li-metal anode, PAN aerogel is carbonized to give macroporous N-doped cross-linked carbon nanofiber that behaves as a lithiophilic host to regulate Li plating and suppress the growth of Li dendrite. Combining the improvements for both the cathode and anode realizes a remarkable long-term cyclability (765 mAh g−1 after 300 cycles) in a full cell. It provides new opportunity to propel the practical application of advanced LSBs.  相似文献   

7.
Potassium ions batteries (PIBs) have been considered as promising energy storage systems owning to potassium rich natural abundances. However, the difficult reaction kinetics and poor cycling of electrode restrict the further development of PIBs. In this work, antimony anchored in MoS2 nanosheets with N-doped carbon coating (Sb/MoS2/NCs) are prepared and evaluated as anode for PIBs. In the unique Sb/MoS2/NCs structure, the volume expansion of Sb particles could be effectively buffered by the around MoS2 structure. The defects in MoS2 nanosheets provide more electrochemical reaction sites for sufficient K+ insertion/extraction. Furthermore, the N-doped carbon can further accommodate the volume expansion and improve the electronic conductivity of Sb/MoS2/NCs composites. Due to the above advantages, the Sb/MoS2/NCs anode delivers a capacity of 235 mAh/g at 50 mA/g after 78 cycles. This work provides a prospective strategy to design advanced anode materials for PIBs using MoS2 and antimony composites.  相似文献   

8.
Lithium–sulfur (Li–S) batteries have been recognized as promising substitutes for current energy‐storage technologies owing to their exceptional advantage in energy density. The main challenge in developing highly efficient and long‐life Li–S batteries is simultaneously suppressing the shuttle effect and improving the redox kinetics. Polar host materials have desirable chemisorptive properties to localize the mobile polysulfide intermediates; however, the role of their electrical conductivity in the redox kinetics of subsequent electrochemical reactions is not fully understood. Conductive polar titanium carbides (TiC) are shown to increase the intrinsic activity towards liquid–liquid polysulfide interconversion and liquid–solid precipitation of lithium sulfides more than non‐polar carbon and semiconducting titanium dioxides. The enhanced electrochemical kinetics on a polar conductor guided the design of novel hybrid host materials of TiC nanoparticles grown within a porous graphene framework (TiC@G). With a high sulfur loading of 3.5 mg cm?2, the TiC@G/sulfur composite cathode exhibited a substantially enhanced electrochemical performance.  相似文献   

9.
《化学:亚洲杂志》2017,12(24):3128-3134
Lithium‐sulfur (Li‐S) batteries have recently attracted a large amount of attention as promising candidates for next‐generation high‐power energy storage devices because of their high theoretical capacity and energy density. However, the shuttle effect of polysulfides and poor conductivity of sulfur are still vital issues that constrain their specific capacity and cyclic stability. Here, we design coaxial MnO2‐graphitic carbon hollow nanofibers as sulfur hosts for high‐performance lithium‐sulfur batteries. The hollow C/MnO2 coaxial nanofibers are synthesized via electrospinning and carbonization of the carbon nanofibers (CNFs), followed by an in situ redox reaction to grow MnO2 nanosheets on the surface of CNFs. The inner graphitic carbon layer not only maintains intimate contact with sulfur and outer MnO2 shell to significantly increase the overall electrical conductivity but also acts as a protective layer to prevent dissolution of polysulfides. The outer MnO2 nanosheets restrain the shuttle effect greatly through chemisorption and redox reaction. Therefore, the robust S@C/MnO2 nanofiber cathode delivers an extraordinary rate capability and excellent cycling stability with a capacity decay rate of 0.044 and 0.051 % per cycle after 1000 cycles at 1.0 C and 2.0 C, respectively. Our present work brings forward a new facile and efficient strategy for the functionalization of inorganic metal oxide on graphitic carbons as sulfur hosts for high performance Li‐S batteries.  相似文献   

10.
The sluggish sulfur redox kinetics and shuttle effect of lithium polysulfides (LiPSs) are recognized as the main obstacles to the practical applications of the lithium-sulfur (Li−S) batteries. Accelerated conversion by catalysis can mitigate these issues, leading to enhanced Li−S performance. However, a catalyst with single active site cannot simultaneously accelerate multiple LiPSs conversion. Herein, we developed a novel dual-defect (missing linker and missing cluster defects) metal–organic framework (MOF) as a new type of catalyst to achieve synergistic catalysis for the multi-step conversion reaction of LiPSs. Electrochemical tests and first-principle density functional theory (DFT) calculations revealed that different defects can realize targeted acceleration of stepwise reaction kinetics for LiPSs. Specifically, the missing linker defects can selectively accelerate the conversion of S8→Li2S4, while the missing cluster defects can catalyze the reaction of Li2S4→Li2S, so as to effectively inhibit the shuttle effect. Hence, the Li−S battery with an electrolyte to sulfur (E/S) ratio of 8.9 mL g−1 delivers a capacity of 1087 mAh g−1 at 0.2 C after 100 cycles. Even at high sulfur loading of 12.9 mg cm−2 and E/S=3.9 mL g−1, an areal capacity of 10.4 mAh cm−2 for 45 cycles can still be obtained.  相似文献   

11.
We report the electrochemistry of a hitherto unexplored Na2MoS4 phase as a conversion electrode material for Na‐ and Li‐ion batteries. The material adopts an amorphous coordination polymer structure with mixed Mo and S valences. XPS and XRD analysis reveal a complex interplay between Mo and S redox chemistry, while excluding the formation of free sulfur, lithium sulfide, or other crystalline phases. Na2MoS4 behaves as a mixed ionic–electronic conductor, with electronic conductivity of 6.1×10?4 S cm?1, that permits carbon‐free application in an electrochemical cell. A reversible capacity of up to 500 mAh g?1 was attained, corresponding to a five‐electron redox exchange, with species ranging from <Na<1MoS4> (highest oxidized state) to <Na>5MoS4> (lowest oxidized state). This study emphasizes the excellent charge‐storage performances of Na2MoS4 for Li‐ or Na‐ion batteries, and enriches the emerging library and knowledge of sulfide phases with mixed anionic and cationic redox properties.  相似文献   

12.

The shuttle effect of lithium-sulfur (Li–S) battery is one of the crucial factors restraining its commercial application, because LiPSs (lithium polysulfides) usually leads to poor cycle life and low coulomb efficiency. Some studies have shown that metal oxides can adsorb soluble polysulfides. Herein, CeO2 (cerium-oxide)-doped carbon nanotubes (CeO2@CNTs) were prepared by the hydrothermal method. The polar metal oxide CeO2 enhanced the chemisorption of the cathode to LiPSs and promoted the redox reaction of the cathode through catalysis properties. Meanwhile, the carbon nanotubes (CNTs) enhanced cathode conductivity and achieved more sulfur loading. The strategy could alleviate polysulfide shuttling and accelerate redox kinetics, improving Li–S batteries' electrochemical performances. As a result, the CeO2@CNTs/S composite cathode showed the excellent capacity of 1437.6 mAh g−1 in the current density of 167.5 mA g−1 at 0.1 C, as well as a long-term cyclability with an inferior capacity decay of 0.17% per cycle and a superhigh coulombic efficiency of 100.434% within 300 cycles. The superior electrochemical performance was attributed to the polar adsorption of CeO2 on polysulfides and the excellent conductivity of CNTs.

  相似文献   

13.
Hybrid materials, integrating the merits of individual components, are ideal structures for efficient sodium storage. However, the construction of hybrid structures with decent physical/electrochemical properties is still challenging. Now, the elaborate design and synthesis of hierarchical nanoboxes composed of three‐layered Cu2S@carbon@MoS2 as anode materials for sodium‐ion batteries is reported. Through a facile multistep template‐engaged strategy, ultrathin MoS2 nanosheets are grown on nitrogen‐doped carbon‐coated Cu2S nanoboxes to realize the Cu2S@carbon@MoS2 configuration. The design shortens the diffusion path of electrons/Na+ ions, accommodates the volume change of electrodes during cycling, enhances the electric conductivity of the hybrids, and offers abundant active sites for sodium uptake. By virtue of these advantages, these three‐layered Cu2S@carbon@MoS2 hierarchical nanoboxes show excellent electrochemical properties in terms of decent rate capability and stable cycle life.  相似文献   

14.
锂硫电池中较差的循环稳定性和倍率性能是实现锂硫电池商业化的技术障碍,其主要原因之一是多硫化物在硫电极内的电化学转化速率较为缓慢。为此,我们以ZIF-9为前驱体,采用先碳化,再酸化刻蚀,最后硒化的方法合成了含少量催化剂的CoSe修饰氮掺杂多孔碳(CoSe/NC)电极材料,以期提高硫电极内多硫化物的电化学转化动力学性能,并通过流动液相三电极体系对该材料进行电化学动力学表征。结果显示,相较于对比材料,CoSe/NC能够加快多硫化物的氧化还原反应速率,在0.2mA·cm-2电流密度下,多硫化物氧化还原反应在CoSe/NC电极上有最小的反应过电位;同时,在0.1 V过电位下,各氧化还原反应也有最大的响应电流。因此,将CoSe/NC作为硫宿主材料组装电池展现了优异的电化学性能:在1C(1C=1 675 mA·g-1)下初始放电比容量为1 068 mAh·g-1,经过500次循环后,可逆容量仍保持在693 mAh·g-1。另外,在3C的高电流密度下,放电比容量可高达819 mAh·g-1。  相似文献   

15.
Lithium–sulfur batteries, owing to the multi-electron participation in the redox reaction, possess enormous energy density, which has aroused much attention. Nevertheless, the detrimental shuttle effect, volume expansion, and electrical insulation of sulfur, have hindered their application. To improve the cyclability, a functional host, consisting of Co nanoparticles and N-doped hollow graphitized carbon (Co-NHGC) material, is elaborated, which has the advantages of: 1) the graphitized carbon material working as an electronic matrix to improve the utilization rate of sulfur; 2) the hollow structure relieving the stress change caused by volume expansion; 3) the rich active sites catalyze the electrochemical reaction of sulfur and entrap polysulfides. These advantages significantly improve the performance of the lithium–sulfur batteries. Accordingly, the S@Co-NHGC cathode exhibits excellent initial specific capacity, high coulombic efficiency, and excellent rate performance. This work utilizes a novel method of dopamine in situ etching of a metal–organic framework to synthetize the Co-NHGC host of sulfur, which will hopefully provide inspiration for other energy materials.  相似文献   

16.
锂硫电池中较差的循环稳定性和倍率性能是实现锂硫电池商业化的技术障碍,其主要原因之一是多硫化物在硫电极内的电化学转化动力学较为缓慢。为此,我们以ZIF-9为前驱体,采用先碳化,再酸化刻蚀,最后硒化的方法合成了含少量催化剂的CoSe修饰氮掺杂多孔碳(CoSe/NC)电极材料,以期提高硫电极内多硫化物的电化学转化动力学性能,并通过流动液相三电极体系对该材料进行电化学动力学表征。结果显示,相较于对比材料,CoSe/NC能够加快多硫化物的氧化还原反应速率,在 0.2mA·cm-2电流密度下,多硫化物氧化还原反应在CoSe/NC电极上有最小的反应过电位;同时,在0.1 V过电位下,各氧化还原反应也有最大的响应电流。因此,将 CoSe/NC作为硫宿主材料组装电池展现了优异的电化学性能:在 1C(1C=1 675 mA·g-1)下初始放电比容量为1 068 mAh·g-1,经过500次循环后,可逆容量仍保持在693 mAh·g-1。另外,在3C的高电流密度下,放电比容量可高达819 mAh·g-1。  相似文献   

17.
Molybdenum disulfide (MoS2) is one of the most promising alternatives to the Pt-based electrocatalysts for the hydrogen evolution reaction (HER). However, its performance is currently limited by insufficient active edge sites and poor electron transport. Hence, enormous efforts have been devoted to constructing more active edge sites and improving conductivity to obtain enhanced electrocatalytic performance. Herein, the 3D carbon foam (denoted as CF) supported edge-rich N-doped MoS2 nanoflakes were successfully fabricated by using the commercially available polyurethane foam (PU) as the 3D substrate and PMo12O403− clusters (denoted as PMo12) as the Mo source through redox polymerization, followed by sulfurization. Owing to the uniform distribution of nanoscale Mo sources and 3D carbon foam substrate, the as-prepared MoS2-CF composite possessed well-exposed active edge sites and enhanced electrical conductivity. Systematic investigation demonstrated that the MoS2-CF composite showed high HER performance with a low overpotential of 92 mV in 1.0 m KOH and 155 mV in 0.5 m H2SO4 at a current density of 10 mA cm−2. This work offers a new pathway for the rational design of MoS2-based HER electrocatalysts.  相似文献   

18.
Hybrid materials, integrating the merits of individual components, are ideal structures for efficient sodium storage. However, the construction of hybrid structures with decent physical/electrochemical properties is still challenging. Now, the elaborate design and synthesis of hierarchical nanoboxes composed of three-layered Cu2S@carbon@MoS2 as anode materials for sodium-ion batteries is reported. Through a facile multistep template-engaged strategy, ultrathin MoS2 nanosheets are grown on nitrogen-doped carbon-coated Cu2S nanoboxes to realize the Cu2S@carbon@MoS2 configuration. The design shortens the diffusion path of electrons/Na+ ions, accommodates the volume change of electrodes during cycling, enhances the electric conductivity of the hybrids, and offers abundant active sites for sodium uptake. By virtue of these advantages, these three-layered Cu2S@carbon@MoS2 hierarchical nanoboxes show excellent electrochemical properties in terms of decent rate capability and stable cycle life.  相似文献   

19.
Here, we for the first time introduce ethoxylation chemistry to develop a new octupolar cyano-vinylene-linked 2D polymer framework (Cyano-OCF-EO) capable of acting as efficient mixed electron/ion conductors and metal-free sulfur evolution catalysts for dual-promoted Li and S electrochemistry. Our strategy creates a unique interconnected network of strongly-coupled donor 3-(acceptor-core) octupoles in Cyano-OCF-EO, affording enhanced intramolecular charge transfer, substantial active sites and crowded open channels. This enables Cyano-OCF-EO as a new versatile separator modifier, which endows the modified separator with superior catalytic activity for sulfur conversion and rapid Li ion conduction with the high Li+ transference number up to 0.94. Thus, the incorporation of Cyano-OCF-EO can concurrently regulate sulfur redox reactions and Li-ion flux in Li−S cells, attaining boosted bidirectional redox kinetics, inhibited polysulfide shuttle and dendrite-free Li anodes. The Cyano-OCF-EO-involved Li−S cell is endowed with excellent overall electrochemical performance especially large areal capacity of 7.5 mAh cm−2 at high sulfur loading of 8.7 mg cm−2. Mechanistic studies unveil the dominant multi-promoting effect of the triethoxylation on electron and ion conduction, polysulfide adsorption and catalytic conversion as well as previously-unexplored −CN/C−O dual-site synergistic effect for enhanced polysulfide adsorption and reduced energy barrier toward Li2S conversion.  相似文献   

20.
Rational designs of electrocatalytic active sites and architectures are of great importance to develop cost-efficient non-noble metal electrocatalysts towards efficient oxygen reduction reaction (ORR) for high-performance energy conversion and storage devices. In this work, active amorphous Fe-based nanoclusters (Fe NC) are elaborately embedded at the inner surface of balloon-like N-doped hollow carbon (Fe NC/Ch sphere) as an efficient ORR electrocatalyst with an ultrathin wall of about 10 nm. When evaluated for electrochemical performance, Fe NC/Ch sphere exhibits decent ORR activity with a diffusion-limited current density of ~5.0 mA/cm2 and a half-wave potential of ~0.81 V in alkaline solution, which is comparable with commercial Pt/C and superior to Fe nanoparticles supported on carbon sheet (Fe NP/C sheet) counterpart. The electrochemical analyses combined with electronic structure characterizations reveal that robust Fe-N interactions in amorphous Fe nanoclusters are helpful for the adsorption of surface oxygen-relative species, and the strong support effect of N-doped hollow carbon is benefitial for accelerating the interfacial electron transfer, which jointly contributes to improve ORR kinetics for Fe NC/Ch sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号