首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Structural evolution of the cathode during cycling plays a vital role in the electrochemical performance of sodium‐ion batteries. A strategy based on engineering the crystal structure coupled with chemical substitution led to the design of the layered P2@P3 integrated spinel oxide cathode Na0.5Ni0.1Co0.15Mn0.65Mg0.1O2, which shows excellent sodium‐ion half/full battery performance. Combined analyses involving scanning transmission electron microscopy with atomic resolution as well as in situ synchrotron‐based X‐ray absorption spectra and in situ synchrotron‐based X‐ray diffraction patterns led to visualization of the inherent layered P2@P3 integrated spinel structure, charge compensation mechanism, structural evolution, and phase transition. This study provides an in‐depth understanding of the structure‐performance relationship in this structure and opens up a novel field based on manipulating structural evolution for the design of high‐performance battery cathodes.  相似文献   

2.
Demands for large-scale energy storage systems have driven the development of layered transition-metal oxide cathodes for room-temperature rechargeable sodium ion batteries (SIBs). Now, an abnormal layered-tunnel heterostructure Na0.44Co0.1Mn0.9O2 cathode material induced by chemical element substitution is reported. By virtue of beneficial synergistic effects, this layered-tunnel electrode shows outstanding electrochemical performance in sodium half-cell system and excellent compatibility with hard carbon anode in sodium full-cell system. The underlying formation process, charge compensation mechanism, phase transition, and sodium-ion storage electrochemistry are clearly articulated and confirmed through combined analyses of in situ high-energy X-ray diffraction and ex situ X-ray absorption spectroscopy as well as operando X-ray diffraction. This crystal structure engineering regulation strategy offers a future outlook into advanced cathode materials for SIBs.  相似文献   

3.
使用电解液成膜添加剂是一种简单高效的提高电池循环稳定性的方法。氟代碳酸乙烯酯(FEC)的最低未被占据分子轨道(LUMO)能量较低,易被还原,通常被认为是很好的负极成膜添加剂,但因其最高占据分子轨道(HOMO)能量也较低,抗氧化性较好,故其被认为不在正极上发生作用。本工作结合电化学,形貌分析,化学成分表征,原位结构分析等方法研究了FEC添加剂在钠离子电池中的作用。我们发现适量的FEC添加剂不仅可以显著抑制电解液溶剂碳酸丙烯酯(PC)的分解,而且会在正极上形成一层富NaF的保护层,提高循环过程中正极晶格结构稳定性,从而提高电池的循环稳定性。密度泛函理论(DFT)计算表明,FEC之所以能在正极上形成保护层,可能与其容易在正极界面与钠盐阴离子ClO_4~-结合反应有关。  相似文献   

4.
Ni-rich LiNi1−xyMnxCoyO2 (NMC) layered compounds are the dominant cathode for lithium ion batteries. The role of crystallographic defects on structure evolution and performance degradation during electrochemical cycling is not yet fully understood. Here, we investigated the structural evolution of a Ni-rich NMC cathode in a solid-state cell by in situ transmission electron microscopy. Antiphase boundary (APB) and twin boundary (TB) separating layered phases played an important role on phase change. Upon Li depletion, the APB extended across the layered structure, while Li/transition metal (TM) ion mixing in the layered phases was detected to induce the rock-salt phase formation along the coherent TB. According to DFT calculations, Li/TM mixing and phase transition were aided by the low diffusion barriers of TM ions at planar defects. This work reveals the dynamical scenario of secondary phase evolution, helping unveil the origin of performance fading in Ni-rich NMC.  相似文献   

5.
Li‐rich layered oxide Li1.18Ni0.15Co0.15Mn0.52O2 (LNCM) is, for the first time, examined as the positive electrode for hybrid sodium‐ion battery and its Na+ storage properties are comprehensively studied in terms of galvanostatic charge–discharge curves, cyclic voltammetry and rate capability. LNCM in the proposed sodium‐ion battery demonstrates good rate capability whose discharge capacity reaches about 90 mA h g?1 at 10 C rate and excellent cycle stability with specific capacity of about 105 mA h g?1 for 200 cycles at 5 C rate. Moreover, ex situ ICP‐OES suggests interesting mixed‐ions migration processes: In the initial two cycles, only Li+ can intercalate into the LNCM cathode, whereas both Li+ and Na+ work together as the electrochemical cycles increase. Also the structural evolution of LNCM is examined in terms of ex situ XRD pattern at the end of various charge–discharge scans. The strong insight obtained from this study could be beneficial to the design of new layered cathode materials for future rechargeable sodium‐ion batteries.  相似文献   

6.
以氟化锂为氟源,通过高温固相法合成了F掺杂的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2。采用X射线衍射仪(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)和电化学测试等手段研究F影响LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2结构和性能的微观机制。结果表明:适量F掺杂可以提高正极材料的放电比容量,改善其倍率性、循环性和热稳定性。当F掺杂量(物质的量分数)为1.5%时,材料的综合电化学性能最优,初始放电比容量(0.2C)和50周循环容量保持率(1C)分别由原始的174.0 mAh·g~(-1)(78.7%)提高到178.6 mAh·g~(-1)(85.7%)。LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料性能的改善可归因于F能够增强过渡金属层、锂层与氧层之间的结合力,提高材料的结构稳定性。此外,F掺杂还有利于降低电化学反应中的界面电阻和电荷转移阻抗。  相似文献   

7.
Layered metal oxides have attracted increasing attention as cathode materials for sodium-ion batteries (SIBs). However, the application of such cathode materials is still hindered by their poor rate capability and cycling stability. Here, a facile self-templated strategy is developed to synthesize uniform P2-Na0.7CoO2 microspheres. Due to the unique microsphere structure, the contact area of the active material with electrolyte is minimized. As expected, the P2-Na0.7CoO2 microspheres exhibit enhanced electrochemical performance for sodium storage in terms of high reversible capacity (125 mAh g−1 at 5 mA g−1), superior rate capability and long cycle life (86 % capacity retention over 300 cycles). Importantly, the synthesis method can be easily extended to synthesize other layered metal oxide (P2-Na0.7MnO2 and O3-NaFeO2) microspheres.  相似文献   

8.
The structural stability of cathode materials during electrochemical reactions, in particular, under high‐rate discharge, is pertinent to the design and development of new electrode materials. This study investigates the structural inhomogeneity that develops within a single LiNi0.835Co0.15Al0.015O2 (NCA83) particle during a fast discharging process under different cutoff voltages. Some of the NCA83 particles discharged from a high cutoff voltage (4.8 V) developed surface areas in which the layered structure was recovered, although the interiors retained the degraded spinel structure. These micro‐ and nano‐scale structural inversions from high cutoff voltage seem highly correlated with structural evolutions in the initial charged state, and may ultimately degrade the cycling stability. This study advances understanding of the structural inhomogeneity within primary particles during various electrochemical processes and may facilitate the development of new Ni‐rich cathode materials.  相似文献   

9.
The structural stability of cathode materials during electrochemical reactions, in particular, under high-rate discharge, is pertinent to the design and development of new electrode materials. This study investigates the structural inhomogeneity that develops within a single LiNi0.835Co0.15Al0.015O2 (NCA83) particle during a fast discharging process under different cutoff voltages. Some of the NCA83 particles discharged from a high cutoff voltage (4.8 V) developed surface areas in which the layered structure was recovered, although the interiors retained the degraded spinel structure. These micro- and nano-scale structural inversions from high cutoff voltage seem highly correlated with structural evolutions in the initial charged state, and may ultimately degrade the cycling stability. This study advances understanding of the structural inhomogeneity within primary particles during various electrochemical processes and may facilitate the development of new Ni-rich cathode materials.  相似文献   

10.
Demands for large‐scale energy storage systems have driven the development of layered transition‐metal oxide cathodes for room‐temperature rechargeable sodium ion batteries (SIBs). Now, an abnormal layered‐tunnel heterostructure Na0.44Co0.1Mn0.9O2 cathode material induced by chemical element substitution is reported. By virtue of beneficial synergistic effects, this layered‐tunnel electrode shows outstanding electrochemical performance in sodium half‐cell system and excellent compatibility with hard carbon anode in sodium full‐cell system. The underlying formation process, charge compensation mechanism, phase transition, and sodium‐ion storage electrochemistry are clearly articulated and confirmed through combined analyses of in situ high‐energy X‐ray diffraction and ex situ X‐ray absorption spectroscopy as well as operando X‐ray diffraction. This crystal structure engineering regulation strategy offers a future outlook into advanced cathode materials for SIBs.  相似文献   

11.
Herein, we introduce a 4.0 V class high-voltage cathode material with a newly recognized sodium superionic conductor (NASICON)-type structure with cubic symmetry (space group P213), Na3V(PO3)3N. We synthesize an N-doped graphene oxide-wrapped Na3V(PO3)3N composite with a uniform carbon coating layer, which shows excellent rate performance and outstanding cycling stability. Its air/water stability and all-climate performance were carefully investigated. A near-zero volume change (ca. 0.40 %) was observed for the first time based on in situ synchrotron X-ray diffraction, and the in situ X-ray absorption spectra revealed the V3.2+/V4.2+ redox reaction with high reversibility. Its 3D sodium diffusion pathways were demonstrated with distinctive low energy barriers. Our results indicate that this high-voltage NASICON-type Na3V(PO3)3N composite is a competitive cathode material for sodium-ion batteries and will receive more attention and studies in the future.  相似文献   

12.
Titanium-based polyanions have been intensively investigated for sodium-ion batteries owing to their superior structural stability and thermal safety. However, their low working potential hindered further applications. Now, a cation and anion dual doping strategy is used to boost the redox potential of Ti-based cathodes of Na3Ti0.5V0.5(PO3)3N as a new cathode material for sodium ion batteries. Both the Ti3+/Ti4+ and V3+/V4+ redox couples are reversibly accessed, leading to two distinctive voltage platforms at ca. 3.3 V and ca. 3.8 V, respectively. The remarkably improved cycling stability (86.3 %, 3000 cycles) can be ascribed to the near-zero volume strain in this unusual cubic symmetry, which has been demonstrated by in situ synchrotron-based X-ray diffraction. First-principles calculations reveal its well-interconnected 3D Na diffusion pathways with low energy barriers, and the two-sodium-extracted intermediate NaTi0.5V0.5(PO3)3N is also a stable phase according to formation energy calculations.  相似文献   

13.
Sodium-ion batteries (SIBs) have attracted much attention due to their abundance, easy accessibility, and low cost. All of these advantages make them potential candidates for large-scale energy storage. The P2-type layered transition-metal oxides (NaxTMO2; TM=Mn, Co, Ni, Ti, Fe, V, Cr, and a mixture of multiple elements) exhibit good Na+ ion conductivity and structural stability, which make them an excellent choice for the cathode materials of SIBs. Herein, the structural evolution, anionic redox reaction, some challenges, and recent progress of NaxTMO2 cathodes for SIBs are reviewed and summarized. Moreover, a detailed understanding of the relationship of chemical components, structures, phase compositions, and electrochemical performance is presented. This Review aims to provide a reference for the development of P2-type layered transition-metal oxide cathode materials for SIBs.  相似文献   

14.
Li-rich layered Li1.2Ni0.2Mn0.6O2 has been surface modified by nickel–manganese composite oxide (Ni0.5Mn1.5O x ) to serve as a novel cathode material with novel layered spinel structure for lithium-ion battery. The as-prepared Li1.2Ni0.2Mn0.6O2 before and after surface modification by Ni0.5Mn1.5O x as well as simply blended Li1.2Ni0.2Mn0.6O2 with spinel LiNi0.5Mn1.5O4, have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electronic microscopy, and differential scanning calorimetry. Electrochemical studies indicate that the Ni0.5Mn1.5O x surface modified Li1.2Ni0.2Mn0.6O2 with peculiar layered spinel character dramatically represented increased discharge capacity, improved cycling stability as well as excellent rate capability at high-voltage even up to 5.0 V.  相似文献   

15.
The rapid development of electrochemical energy storage systems requires new electrode materials with high performance. As a two-dimensional material, molybdenum disulfide (MoS2) has attracted increasing interest in energy storage applications due to its layered structure, tunable physical and chemical properties, and high capacity. In this review, the atomic structures and properties of different phases of MoS2 are first introduced. Then, typical synthetic methods for MoS2 and MoS2-based composites are presented. Furthermore, the recent progress in the design of diverse MoS2-based micro/nanostructures for rechargeable batteries, including lithium-ion, lithium-sulfur, sodium-ion, potassium-ion, and multivalent-ion batteries, is overviewed. Additionally, the roles of advanced in situ/operando techniques and theoretical calculations in elucidating fundamental insights into the structural and electrochemical processes taking place in these materials during battery operation are illustrated. Finally, a perspective is given on how the properties of MoS2-based electrode materials are further improved and how they can find widespread application in the next-generation electrochemical energy-storage systems.  相似文献   

16.
The practical viability of high-nickel layered oxide cathodes is compromised by the interphasial and structural degradations. Herein, we demonstrate that by applying an in situ interweaved binder, the cycling stability of high-nickel cathodes can be significantly improved. Specifically, the results show that the resilient binder network immobilizes the transition-metal ions, suppresses electrolyte oxidative decomposition, and mitigates cathode particles pulverization, thus resulting in suppressed cathode-to-anode chemical crossover and ameliorated chemistry and architecture of electrode-electrolyte interphases. Pouch full cells with high-mass-loading LiNi0.8Mn0.1Co0.1O2 cathodes achieve 0.02 % capacity decay per cycle at 1 C rate over 1 000 deep cycles at 4.4 V (vs. graphite). This work demonstrates a rational structural and compositional design strategy of polymer binders to mitigate the structural and interphasial degradations of high-Ni cathodes in lithium-ion batteries.  相似文献   

17.
P2‐type Na2/3Ni1/3Mn2/3O2 was synthesized by a controlled co‐precipitation method followed by a high‐temperature solid‐state reaction and was used as a cathode material for a sodium‐ion battery (SIB). The electrochemical behavior of this layered material was studied and an initial discharge capacity of 151.8 mA h g?1 was achieved in the voltage range of 1.5–3.75 V versus Na+/Na. The retained discharge capacity was found to be 123.5 mA h g?1 after charging/discharging 50 cycles, approximately 81.4 % of the initial discharge capacity. In situ X‐ray diffraction analysis was used to investigate the sodium insertion and extraction mechanism and clearly revealed the reversible structural changes of the P2‐Na2/3Ni1/3Mn2/3O2 and no emergence of the O2‐Ni1/3Mn2/3O2 phase during the cycling test, which is important for designing stable and high‐performance SIB cathode materials.  相似文献   

18.
The increasing use of lithium‐ion batteries (LIBs) in high‐power applications requires improvement of their high‐temperature electrochemical performance, including their cyclability and rate capability. Spinel lithium manganese oxide (LiMn2O4) is a promising cathode material because of its high stability and abundance. However, it exhibits poor cycling performance at high temperatures owing to Mn dissolution. Herein we show that when stoichiometric lithium manganese oxide is coated with highly doped spinels, the resulting epitaxial coating has a hierarchical atomic structure consisting of cubic‐spinel, tetragonal‐spinel, and layered structures, and no interfacial phase is formed. In a practical application of the coating to doped spinel, the material retained 90 % of its capacity after 800 cycles at 60 °C. Thus, the formation of an epitaxial coating with a hierarchical atomic structure could enhance the electrochemical performance of LIB cathode materials while preventing large losses in capacity.  相似文献   

19.
《中国化学快报》2023,34(8):107885
Aqueous zinc ion batteries (AZIBs) have attracted much attention in recent years due to their high safety, low cost, and decent electrochemical performance. However, the traditional electrodes development process requires tedious synthesis and testing procedures, which reduces the efficiency of developing high-performance battery devices. Here, we proposed a high-throughput screening strategy based on first-principles calculations to aid the experimental development of high-performance spinel cathode materials for AZIBs. We obtained 14 spinel materials from 12,047 Mn/Zn-O based materials by examining their structures and whether they satisfy the basic properties of electrodes. Then their band structures and density of states, open circuit voltage and volume expansion rate, ionic diffusion coefficient and energy barrier were further evaluated by first-principles calculations, resulting in five potential candidates. One of the promising candidates identified, Mg2MnO4, was experimentally synthesized, characterized and integrated into an AZIB based cell to verify its performance as a cathode. The Mg2MnO4 cathode exhibits excellent cycling stability, which is consistent with the theoretically predicted low volume expansion. Moreover, at high current density, the Mg2MnO4 cathode still exhibits high reversible capacity and excellent rate performance, indicating that it is an excellent cathode material for AZIBs. Our work provides a new approach to accelerate the development of high-performance cathodes for AZIBs and other ion batteries.  相似文献   

20.
Low‐cost layered oxides free of Ni and Co are considered to be the most promising cathode materials for future sodium‐ion batteries. Biphasic Na0.78Cu0.27Zn0.06Mn0.67O2 obtained via superficial atomic‐scale P3 intergrowth with P2 phase induced by Zn doping, consisting of inexpensive transition metals, is a promising cathode for sodium‐ion batteries. The P3 phase as a covering layer in this composite shows not only in excellent electrochemical performance but also its tolerance to moisture. The results indicate that partial Zn substitutes can effectively control biphase formation for improving the structural/electrochemical stability as well as the ionic diffusion coefficient. Based on in situ synchrotron X‐ray diffraction coupled with electron‐energy‐loss spectroscopy, a possible Cu2+/3+ redox reaction mechanism has now been revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号