首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon photon absorption, π‐conjugated organics are apt to undergo ultrafast structural reorganization via electron‐vibrational coupling during non‐adiabatic transitions. Ultrafast nuclear motions modulate local planarity and quinoid/benzenoid characters within conjugated backbones, which control primary events in the excited states, such as localization, energy transfer, and so on. Femtosecond broadband fluorescence upconversion measurements were conducted to investigate exciton self‐trapping and delocalization in cycloparaphenylenes as ultrafast structural reorganizations are achieved via excited‐state symmetry‐dependent electron‐vibrational coupling. By accessing two high‐lying excited states, one‐photon and two‐photon allowed states, a clear discrepancy in the initial time‐resolved fluorescence spectra and the temporal dynamics/spectral evolution of fluorescence spectra were monitored. Combined with quantum chemical calculations, a novel insight into the effect of the excited‐state symmetry on ultrafast structural reorganization and exciton self‐trapping in the emerging class of π‐conjugated materials is provided.  相似文献   

2.
The time-dependent density functional theory (TDDFT) method was performed to investigate the excited-state hydrogen-bonding dynamics of fluorenone (FN) in hydrogen donating methanol (MeOH) solvent. The infrared spectra of the hydrogen-bonded FN-MeOH complex in both the ground state and the electronically excited states are calculated using the TDDFT method, since the ultrafast hydrogen-bonding dynamics can be investigated by monitoring the vibrational absorption spectra of some hydrogen-bonded groups in different electronic states. We demonstrated that the intermolecular hydrogen bond C=O...H-O between fluorenone and methanol molecules is significantly strengthened in the electronically excited-state upon photoexcitation of the hydrogen-bonded FM-MeOH complex. The hydrogen bond strengthening in electronically excited states can be used to explain well all the spectral features of fluorenone chromophore in alcoholic solvents. Furthermore, the radiationless deactivation via internal conversion (IC) can be facilitated by the hydrogen bond strengthening in the excited state. At the same time, quantum yields of the excited-state deactivation via fluorescence are correspondingly decreased. Therefore, the total fluorescence of fluorenone in polar protic solvents can be drastically quenched by hydrogen bonding.  相似文献   

3.
Linear π-conjugated oligomers have been widely investigated, but the behavior of the corresponding cyclic oligomers is poorly understood, despite the recent synthesis of π-conjugated macrocycles such as [n]cycloparaphenylenes and cyclo[n]thiophenes. Here we present an efficient template-directed synthesis of a π-conjugated butadiyne-linked cyclic porphyrin hexamer directly from the monomer. Small-angle X-ray scattering data show that this nanoring is shape-persistent in solution, even without its template, whereas the linear porphyrin hexamer is relatively flexible. The crystal structure of the nanoring-template complex shows that most of the strain is localized in the acetylenes; the porphyrin units are slightly curved, but the zinc coordination sphere is undistorted. The electrochemistry, absorption, and fluorescence spectra indicate that the HOMO-LUMO gap of the nanoring is less than that of the linear hexamer and less than that of the corresponding polymer. The nanoring exhibits six one-electron reductions and six one-electron oxidations, most of which are well resolved. Ultrafast fluorescence anisotropy measurements show that absorption of light generates an excited state that is delocalized over the whole π-system within a time of less than 0.5 ps. The fluorescence spectrum is amazingly structured and red-shifted. A similar, but less dramatic, red-shift has been reported in the fluorescence spectra of cycloparaphenylenes and was attributed to a high exciton binding energy; however the exciton binding energy of the porphyrin nanoring is similar to those of linear oligomers. Quantum-chemical excited state calculations show that the fluorescence spectrum of the nanoring can be fully explained in terms of vibronic Herzberg-Teller (HT) intensity borrowing.  相似文献   

4.
The monitoring of the excited-state dynamics by time- and frequency-resolved spontaneous emission spectroscopy has been studied in detail for a model exhibiting an excited-state curve crossing. The model represents characteristic aspects of the photoinduced ultrafast dynamics in large molecules in the gas or condensed phases and accounts for strong nonadiabatic and electron-vibrational coupling effects, as well as for vibrational relaxation and optical dephasing. A comprehensive overview of the dependence of spontaneous emission spectra on the characteristics of the excitation and detection processes (such as carrier frequencies, pump/gate pulse durations, as well as optical dephasing) is presented. A systematic comparison of ideal spectra, which provide simultaneously perfect time and frequency resolution and thus contain maximal information on the system dynamics, with actually measurable time- and frequency-gated spectra has been carried out. The calculations of real time- and frequency-gated spectra demonstrate that complementary information on the excited-state dynamics can be extracted when the duration of the gate pulse is varied.  相似文献   

5.
6.
Access to excited-state structures and dynamics of pi-chromophor aggregates is needed to understand their fluorescence behavior and the properties of related materials. A quantum-chemistry-based protocol that provides quantitative and qualitative insight into fluorescence spectra has been applied to perylene bisimide dimers and provides excellent agreement with measured fluorescence spectra. Both dispersion and dipol-dipole interactions determine the preferred relative arrangements of the chromophores in ground and excited states of the dimer. An exciton trapping mechanism is identified, which may limit the energy transfer properties of perylene bisimide and other dye materials.  相似文献   

7.
Benzothiazole is among prominent electron-withdrawing heteroarene moieties used in a variety of π-conjugated molecules. Its relative orientation with respect to the principal dipole vector(s) of chromophores derived thereof is crucial, affecting photophysical and nonlinear optical properties. Here we compare the photophysics and ultrafast dynamics of dipolar and octupolar molecules comprising a triphenylamine electron-donating core, ethynylene π-conjugated linker(s) and benzothiazole acceptor(s) having the matched or mismatched orientation (with respect to the direction of intramolecular charge transfer), while a carbaldehyde group is attached as an auxiliary acceptor. Among chromophores without the auxiliary acceptor, stronger fluorescence solvatochromism and faster excited state dynamics are exhibited for the derivatives with the mismatched geometry. On the contrary, introduction of the auxiliary acceptor to the benzothiazole unit enhances the intramolecular charge transfer ICT (featuring ultrafast dynamics of the excited state) for the matched geometry. The data confirm the crucial role of the relative orientation of asymmetric heteroaromatic unit (regioisomeric effect) in dipolar as well as in multipolar molecules in tuning linear and nonlinear optical properties as well as excited state dynamics.  相似文献   

8.
We investigated the spectroscopic properties of a series of four bistriarylamine donor-pi-bridge-donor D-pi-D compounds (dimers), composed of two asymmetric triarylamine chromophores (monomers). UV/vis, fluorescence, and transient absorption spectra were recorded and compared with those of the corresponding D-pi monomers. Bilinear Lippert-Mataga plots indicate a major molecular reorganization of the excited state in polar media for all compounds. The excited states of the dimers are described as mixed-valence states that show, depending on the chemical nature of the pi bridge, a varying amount of interactions (couplings). We found that superradiant emission, that is, an enhancement of the fluorescence rate in the dimer, is observed only in the case of weak and medium coupling. Whether the first excited-state potential energy surface of the dimers is described by single minimum or a double minimum potential depends on the solvent polarity and the electronic coupling. In the latter case, the dimer relaxes in a symmetry broken CT state with partial positive charge at the triarylamine donor and negative charge at the pi bridge. The [2.2]paracyclophane bridged dimer is an example of a weakly coupled system because the spectroscopic behavior is very similar to the corresponding p-xylene monomer. In contrast, anthracene as well as p-xylene bridges mediate a stronger coupling and reveal a significant cooperative influence on the optical properties.  相似文献   

9.
We present a general two-color two-pulse femtosecond pump-dump approach to study the specific population transfer along the reaction coordinate through the higher vibrational energy levels of excited states of a complex solvated molecule via the depleted spontaneous emission. The time-dependent fluorescence depletion provides the correlated dynamical information between the monitored fluorescence state and the SEP "dumped" dark states, and therefore allow us to obtain the dynamics of the formation of the dark states corresponding to the ultrafast photoisomerization processes. The excited-state dynamics of LDS 751 have been investigated as a function of solvent viscosity and solvent polarity, where a cooperative two-step isomerization process is clearly identified within LDS 751 upon excitation.  相似文献   

10.
Large π-conjugated systems are key in the area of molecular materials. Herein, we prepare via AuI-catalyzed cyclization a series of fully π-conjugated anthracene-fused oligo-BODIPYs. Their structural and optoelectronic properties were studied by several techniques, ranging from X-ray, UV/Vis, and cyclic voltammetry to transient absorption spectroscopy. As a complement, their electronic structures were explored by means of Density Functional Theory (DFT) calculations. Depending on the size and shape of the π-conjugated skeleton, unique features—such as face-to-face supramolecular organization, NIR absorption and fluorescence as well as strong electron accepting character—were noted. All in all, the aforementioned features render them valuable for technological applications.  相似文献   

11.
The x-ray absorption near-edge spectra (XANES) and fluorescence spectra of molecules in the ground state and optically excited states are computed using time-dependent density functional theory and time-dependent Hartree-Fock theory. The calculated XANES spectra of optically excited methanol, benzonitrile, hydrogen sulphide, and titanium tetrachloride and the fluorescence spectra of optically excited methanol can be used to simulate ultrafast optical pump/x-ray probe experiments.  相似文献   

12.
The synthesis, complete structural characterization, electrochemistry, and excited-state dynamics of a series of four bis-heteroleptic iridium(III) charge-transfer complexes composed of a single acac-functionalized and two ortho-metalated 2-phenylpyridine ligands. The formed iodophenyl complex (2) was used as a metallosynthon to introduce extended-core ethynyltolyl (3), ethynylpyrene (4), and ethynylperylene (5) residues into these structures projecting from the acac ancillary ligand. Static and dynamic photoluminescence along with ultrafast and conventional transient absorption measurements in conjunction with cyclic voltammetry were employed to elucidate the nature of the intramolecular energy-transfer processes occurring in the excited states of polychromophores 4 and 5 and are directly compared with those of model complexes 2 and 3. Upon charge-transfer excitation of these molecules, the long-lived triplet-state metal-to-ligand charge-transfer ((3)MLCT)-based photoluminescence readily observed in 2 and 3 (τ = 1 μs) is nearly quantitatively quenched, resulting from production of the associated triplet intraligand ((3)IL) excited states in 4 and 5 through intramolecular triplet-triplet energy transfer. The respective formation of the extended-core (3)*pyrenyl and (3)*perylenyl-localized excited states in 4 and 5 is confirmed by their ultrafast excited-state evolution, which ultimately generates features associated with these (3)IL excited states and their greatly extended excited-state lifetimes with respect to the parent complexes 2 and 3.  相似文献   

13.
There has been a surge of interest concerning the synthesis, optical and electronic properties of π-conjugated polymers that contain transition metal complexes. The integration of transition metal chromophores that feature metal to ligand charge transfer (MLCT) excited states into a π-conjugated polymer permits easy variation of the material’s optical and electronic properties. In this review, we survey a number of recent photophysical studies that examine π-conjugated oligomer or polymer/transition metal complex hybrids. The effects of the types of π-conjugated backbone, oligomer and polymer structure, the conjugation length and coordination to a variety of metal chromophores on the photophysics of the organic-metal hybrids are discussed. The degree of interaction between the polymer (or oligomer) and metal complex based excited states dramatically modulates the observed photophysics.  相似文献   

14.
Dimethyl or diphenyl branched conjugated polycarbosilane oligomers in solutions, including poly[[1,4-bis(thiophenyl)buta-1,3-diyne]-alt-(dimethylsilane)], poly[[1,4-bis(thiophenyl)buta-1,3-diyne]-alt-(diphenylsilane)], poly[[1,4-bis(phenyl)buta-1,3-diyne]-alt-(dimethylsilane)], and poly[[1,4-bis(phenyl)buta-1,3-diyne]-alt-(diphenylsilane)], were investigated by steady-state and picosecond time-resolved spectroscopies to elucidate the effect of silicon-atom introduction into the π-conjugated copolymer backbone and the substitution of the aromatic phenyl group on the silicon atom. The introduction of silicon atoms into π-conjugated copolymer backbones induces slow decay emission components with lifetimes of about 450 ps in addition to π–π* local excited-state relaxations in the time-resolved fluorescence decay profiles. The diphenyls, which are branched in the silicon atoms, bring about broad, structureless emission bands in the low-frequency region of the steady-state fluorescence spectra. However, such broad bands do not occur in the case of dimethyl branched conjugated polycarbosilane oligomers. The time-resolved and solvent-dependent studies of these bands imply that the excited-state dynamics of diphenyl branched conjugated polycarbosilane oligomers can be related to an intramolecular charge-transfer dynamics through an inductive and (d-p) π-conjugation effect between the π-conjugated backbone and the branched phenyl ring. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2901–2908, 1999  相似文献   

15.
Organic nanoparticles from a chiral auxiliary, (R)-(+)-1,1'-bi-2-naphthol dimethyl ether (BNDE), with a range of particle sizes from 25 to 100 nm were fabricated through the reprecipitation method. It is found that BNDE nanoparticles exhibit positive exciton chirality in 200-260 nm region in circular dichroism (CD) spectra, which are completely opposite to CD spectra of the dilute solution. The exciton chirality of the particles displays size-dependent behavior; that is, the exciton chirality peaks evolve to the low-energy side with increase in particles size. CD spectra accompanied with UV, fluorescence spectra, lifetime measurements of the excited states, and quantum mechanical calculations reveal that the chirality inversion results from intermolecular exciton coupling between two adjacent BNDE molecules in the nanoparticles, and the bathochromic shift of the peaks is attributed to the increased intermolecular interaction with increasing particle size.  相似文献   

16.
Exciton coupling between different types of chromophores has been rarely investigated. Herein, a systematic study on the exciton coupling between merocyanine chromophores of different conjugation length with varying excited state energies is presented. In this work well-defined hetero-dimer stacks were obtained upon folding of bis(merocyanine) dyes in nonpolar solvents. They show distinctly different absorption properties in comparison with the spectra of the single chromophores, revealing a significant coupling between the different chromophores. The simulated absorption spectra obtained from time-dependent density functional theory (TD-DFT) calculations are in good agreement with the experimental spectra. Our theoretical analysis based on an extension of Kasha's exciton theory discloses strong coupling between the dyes’ transition dipole moments despite of an excited-state energy difference of 0.60 eV between the chromophores.  相似文献   

17.
We have calculated the nonlinear response function of a DNA duplex helix including the contributions from the exciton population and coherence transfers by developing an appropriate exciton theory as well as by utilizing a projector operator technique. As a representative example of DNA double helices, the B-form (dA)10-(dT)10 is considered in detail. The Green functions of the exciton population and coherence transfer processes were obtained by developing the DNA exciton Hamiltonian. This enables us to study the dynamic properties of the solvent relaxation and exciton transfers. The spectral density describing the DNA base-solvent interactions was obtained by adjusting the solvent reorganization energy to reproduce the absorption and steady-state fluorescence spectra. The time-dependent fluorescence shift of the model DNA system is found to be ultrafast and it is largely determined by the exciton population transfer processes. It is further shown that the nonlinear optical spectroscopic techniques such as photon echo peak shift and two-dimensional photon echo can provide important information on the exciton dynamics of the DNA double helix. We have found that the exciton-exciton coherence transfer plays critical roles in the peculiar energy transfer and ultrafast memory loss of the initially created excitonic state in the DNA duplex helix.  相似文献   

18.
The DNA double helix poly(dGdC).poly(dGdC) is studied by fluorescence upconversion spectroscopy with femtosecond resolution. It is shown that the excited-state relaxation of the duplex is faster than that of the monomeric components dGMP and dCMP. This contrasts with the behavior of duplexes composed exclusively of adenine-thymine base pairs, for which an overall lengthening of the fluorescence lifetimes with respect to that of an equimolar mixture of dAMP and TMP was reported previously. Despite the difference in the excited-state deactivation rate between the two types of duplexes, the signature of ultrafast energy transfer is present in both of them. It is attested by the decrease of fluorescence anisotropy decay of the duplexes on the subpicosecond time scale, where molecular motions are inhibited, and is corroborated by the fact that their steady-state fluorescence spectra do not change with the excitation wavelength. Energy transfer involves excited states delocalized over at least two bases, whose existence is revealed by the UV absorption spectrum of the duplex, clearly different from that of an equimolar spectrum of dGMP and dCMP.  相似文献   

19.
Abstract— Numerical simulations of the ultrafast exciton motion in photosynthetic antenna complexes are used to reproduce measured data of optical pump-probe experiments. Emphasis is put on a chlorophyll aL/chlorophyll b dimer of the light-harvesting complex of the photosystem II of higher plants (LHC-II). To account for intramolecular excited-state absorption the standard exciton theory is extended to the inclusion of a second higher excited singlet state per chlorophyll molecule. The density matrix theory is applied to describe the dissipative dynamics of excitons. Different mechanisms for energy relaxation and dephasing including pure dephasing processes are discussed. As a result, a further refinement of earlier calculations on the one-color pump-probe spectra at the LHC-II can be presented. In particular, the presence of non-Markovian effects with respect to the exciton-vibrational interaction in the LHC-II, discovered previously in the two-color pump-probe spectrum, is demonstrated here for the one-color pump-probe case.  相似文献   

20.
Porphyrins bearing the redox-active phenylenediamine pendant groups are synthesized to afford dimensionally oriented π-conjugated systems. The structural and electronic characteristics depend on the atropisomers. In the fluorescence emission spectra, the emission from the porphyrin moiety is almost completely quenched. Zinc complexation of the αααα isomers gives the corresponding zinc porphyrins bearing four phenylenediamine strands. Treatment with a bidentate ligand, DABCO, leads to the sandwich dimer complex, in which the porphyrin moieties are surrounded by π-conjugated pendant groups. p-t-Butylcalix[4]arenes bearing four redox-active phenylenediamine pendant groups on the lower rim are synthesized and characterized both spectroscopically and electrochemically. The interconversion of the oxidation states of the pendant groups is demonstrated both chemically and electrochemically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号