首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two dimensional (2D) nanoribbons constitute an emerging nanoarchitecture for advanced microelectronics and energy conversion due to the stronger size confinement effects compared to traditional nanosheets. Triclinic crystalline red phosphorus (cRP) composed by a layered structure is a promising 2D phosphorus allotrope and the tube‐like substructure is beneficial to the construction of nanoribbons. In this work, few‐layer cRP nanoribbons are synthesized and the effectiveness in the electrochemical nitrogen reduction reaction (NRR) is investigated. An iodine‐assisted chemical vapor transport (CVT) method is developed to synthesize circa 10 g of bulk cRP lumps with a yield of over 99 %. With the aid of probe ultrasonic treatment, high‐quality cRP microcrystals are exfoliated into few‐layer nanoribbons (cRP NRs) with large aspect ratios. As non‐metallic materials, cRP NRs are suitable for the electrochemical nitrogen reduction reaction. The ammonia yield is 15.4 μg h?1 mgcat.?1 at ?0.4 V vs. reversible hydrogen electrode in a neutral electrolyte under ambient conditions and the Faradaic efficiency is 9.4 % at ?0.2 V. Not only is cRP a promising catalyst, but also the novel strategy expands the application of phosphorus‐based 2D structures beyond that of traditional nanosheets.  相似文献   

2.
The key to bringing the electrocatalytic nitrogen fixation from conception to application lies in the development of high-efficiency, cost-effective electrocatalysts. Layered double hydroxides (LDHs), also known as hydrotalcites, are promising electrocatalysts for water splitting due to multiple metal centers and large surface areas. However, their activities in the electrocatalytic nitrogen fixation are unsatisfactory. Now, a simple and effective way of phosphorus doping is presented to regulate the charge distribution in LDHs, thus promoting the nitrogen adsorption and activation. The P-doped LDHs are further coupled to a self-supported, conductive matrix, that is, a carbon nanofibrous membrane, which prevents their aggregation as well as ensuring rapid charge transfer at the interface. By this strategy, decent ammonia yield (1.72×10−10 mol s−1 cm−2) and Faradaic efficiency (23 %) are delivered at −0.5 V vs. RHE in 0.1 m Na2SO4.  相似文献   

3.
Two-dimensional (2D) semiconducting boron nanosheets (few-layer borophene) have been theoretically predicted, but their band gap tunability has not been experimentally confirmed. In this study, hydroxy-functionalized borophene (borophene-OH) with tunable band gap was fabricated by liquid-phase exfoliation using 2-butanol solvent. Surface-energy matching between boron and 2-butanol produced smooth borophene, and the exposed unsaturated B sites generated by B−B bond breaking during exfoliation coordinated with OH groups to form semiconducting borophene-OH, enabling a tunable band gap of 0.65–2.10 eV by varying its thickness. Photoelectrochemical (PEC) measurements demonstrated that the use of borophene-OH to fabricate working electrodes for PEC-type photodetectors significantly enhanced the photocurrent density (5.0 μA cm−2) and photoresponsivity (58.5 μA W−1) compared with other 2D monoelemental materials. Thus, borophene-OH is a promising semiconductor with great optoelectronic potential.  相似文献   

4.
Electrochemical conversion of nitrate (NO3) into ammonia (NH3) represents a potential way for achieving carbon-free NH3 production while balancing the nitrogen cycle. Herein we report a high-performance Cu nanosheets catalyst which delivers a NH3 partial current density of 665 mA cm−2 and NH3 yield rate of 1.41 mmol h−1 cm−2 in a flow cell at −0.59 V vs. reversible hydrogen electrode. The catalyst showed a high stability for 700 h with NH3 Faradaic efficiency of ≈88 % at 365 mA cm−2. In situ spectroscopy results verify that Cu nanosheets are in situ derived from the as-prepared CuO nanosheets under electrochemical NO3 reduction reaction conditions. Electrochemical measurements and density functional theory calculations indicate that the high performance is attributed to the tandem interaction of Cu(100) and Cu(111) facets. The NO2 generated on the Cu(100) facets is subsequently hydrogenated on the Cu(111) facets, thus the tandem catalysis promotes the crucial hydrogenation of *NO to *NOH for NH3 production.  相似文献   

5.
The electrochemical reduction of CO2 presents a promising strategy to mitigate the greenhouse effect and reduce excess carbon dioxide emission to realize a carbon-neutral energy cycle, but it suffers from the lack of high-performance electrocatalysts. In this work, catalytic active cobalt porphyrin [TCPP(Co)=(5,10,15,20)-tetrakis(4-carboxyphenyl)porphyrin-CoII] was precisely anchored onto water-stable 2D metal–organic framework (MOF) nanosheets (Zr-BTB) to obtain ultrathin 2D MOF nanosheets [TCPP(Co)/Zr-BTB] with accessible catalytic sites for the CO2 reduction reaction. Compared with molecular cobalt porphyrin, the TCPP(Co)/Zr-BTB exhibits an ultrahigh turnover frequency (TOF=4768 h−1 at −0.919 V vs. reversible hydrogen electrode, RHE) owing to high active-site utilization. In addition, three post-modified 2D MOF nanosheets [TCPP(Co)/Zr-BTB-PABA, TCPP(Co)/Zr-BTB-PSBA, TCPP(Co)/Zr-BTB-PSABA] were obtained, with the modifiers of p-(aminomethyl)benzoic acid (PABA), p-sulfobenzoic acid potassium (PSBA), and p-sulfamidobenzoic acid (PSABA), to change the micro-environments around TCPP(Co) through the tuning of steric effects. Among them, the TCPP(Co)/Zr-BTB-PSABA exhibited the best performance with a faradaic efficiency (FECO) of 85.1 %, TOF of 5315 h−1, and jtotal of 6 mA cm−2 at −0.769 V (vs. RHE). In addition, the long-term durability of the electrocatalysts is evaluated and the role of pH buffer is revealed.  相似文献   

6.
The electrochemical conversion of nitrate pollutants into value-added ammonia is a feasible way to achieve artificial nitrogen cycle. However, the development of electrocatalytic nitrate-to-ammonia reduction reaction (NO3RR) has been hampered by high overpotential and low Faradaic efficiency. Here we develop an iron single-atom catalyst coordinated with nitrogen and phosphorus on hollow carbon polyhedron (denoted as Fe−N/P−C) as a NO3RR electrocatalyst. Owing to the tuning effect of phosphorus atoms on breaking local charge symmetry of the single-Fe-atom catalyst, it facilitates the adsorption of nitrate ions and enrichment of some key reaction intermediates during the NO3RR process. The Fe−N/P−C catalyst exhibits 90.3 % ammonia Faradaic efficiency with a yield rate of 17980 μg h−1 mgcat−1, greatly outperforming the reported Fe-based catalysts. Furthermore, operando SR-FTIR spectroscopy measurements reveal the reaction pathway based on key intermediates observed under different applied potentials and reaction durations. Density functional theory calculations demonstrate that the optimized free energy of NO3RR intermediates is ascribed to the asymmetric atomic interface configuration, which achieves the optimal electron density distribution. This work demonstrates the critical role of atomic-level precision modulation by heteroatom doping for the NO3RR, providing an effective strategy for improving the catalytic performance of single atom catalysts in different electrochemical reactions.  相似文献   

7.
The electrochemical nitrogen reduction reaction (NRR) is a promising energy-efficient and low-emission alternative to the traditional Haber–Bosch process. Usually, the competing hydrogen evolution reaction (HER) and the reaction barrier of ambient electrochemical NRR are significant challenges, making a simultaneous high NH3 formation rate and high Faradic efficiency (FE) difficult. To give effective NRR electrocatalysis and suppressed HER, the surface atomic structure of W18O49, which has exposed active W sites and weak binding for H2, is doped with Fe. A high NH3 formation rate of 24.7 μg h−1 mgcat−1 and a high FE of 20.0 % are achieved at an overpotential of only −0.15 V versus the reversible hydrogen electrode. Ab initio calculations reveal an intercalation-type doping of Fe atoms in the tunnels of the W18O49 crystal structure, which increases the oxygen vacancies and exposes more W active sites, optimizes the nitrogen adsorption energy, and facilitates the electrocatalytic NRR.  相似文献   

8.
Although two‐dimensional (2D) metal oxide/sulfide hybrid nanostructures have been synthesized, the facile preparation of ultrathin 2D nanosheets in high yield still remains a challenge. Herein, we report the first high‐yield preparation of solution‐processed ultrathin 2D metal oxide/sulfide hybrid nanosheets, that is, Tix Ta1−x Sy Oz (x =0.71, 0.49, and 0.30), from Tix Ta1−x S2 precursors. The nanosheet exhibits strong absorbance in the near‐infrared region, giving a large extinction coefficient of 54.1 L g−1 cm−1 at 808 nm, and a high photothermal conversion efficiency of 39.2 %. After modification with lipoic acid‐conjugated polyethylene glycol, the nanosheet is a suitable photothermal agent for treatment of cancer cells under 808 nm laser irradiation. This work provides a facile and general method for the preparation of 2D metal oxide/sulfide hybrid nanosheets.  相似文献   

9.
Designing highly active catalysts at an atomic scale is required to drive the hydrogen evolution reaction (HER). Copper–platinum (Cu‐Pt) dual sites were alloyed with palladium nanorings (Pd NRs) containing 1.5 atom % Pt, using atomically dispersed Cu on ultrathin Pd NRs as seeds. The ultrafine structure of atomically dispersed Cu‐Pt dual sites was confirmed with X‐ray absorption fine structure (XAFS) measurements. The Pd/Cu‐Pt NRs exhibit excellent HER properties in acidic solution with an overpotential of only 22.8 mV at a current density of 10 mA cm−2 and a high mass current density of 3002 A g−1(Pd+Pt) at a −0.05 V potential.  相似文献   

10.
Electrocatalytic N2 reduction reaction (NRR) is recognized as a zero-carbon emission method for NH3 synthesis. However, to date, this technology still suffers from low yield and low selectivity associated with the catalyst. Herein, inspired by the activation of N2 by lithium metal, a highly reactive defective black phosphorene (D−BPene) is proposed as a lithium-like catalyst for boosting electrochemical N2 activation. Correspondingly, we also report a strategy for producing environmentally stable D−BPene by simultaneously constructing defects and fluorination protection based on topochemical reactions. Reliable performance evaluations show that the fluorine-stabilized D−BPene can induce a high NH3 yield rate of ≈70 μg h−1 mgcat.−1 and a high Faradaic efficiency of ≈26 % at −0.5 V vs. RHE in an aqueous electrolyte. This work not only exemplifies the first stable preparation and practical application of D−BPene, but also brings a new design idea for NRR catalysts.  相似文献   

11.
Two-dimensional (2D) porous carbon nanosheets (2DPCs) have attracted great attention for their good porosity and long-distance conductivity. Factors such as templates, precursors, and carbonization–activation methods, directly determine their performance. However, rational design and preparation of porous carbon materials with controlled 2D morphology and heteroatom dopants remains a challenge. Therefore, an ionic polyimide with both sp2- and sp3-hybridized nitrogen atoms was prepared as a precursor for fabricating N-doped hexagonal porous carbon nanosheets through a hard-template approach. Because of the large surface area and efficient charge-mass transport, the resulting activated 2D porous carbon nanosheets (2DPCs-a) displayed promising electrocatalytic properties for oxygen reduction reaction (ORR) in alkaline and acidic media, such as ultralow half-wave potential (0.83 vs. 0.84 V of Pt/C) and superior limiting current density (5.42 vs. 5.14 mA cm−2 of Pt/C). As air cathodes in Zn–air batteries, the as-developed 2DPCs-a exhibited long stability and high capacity (up to 614 mA h g−1), which are both higher than those of commercial Pt/C. This work provides a convenient method for controllable and scalable 2DPCs fabrication as well as new opportunities to develop high-efficiency electrocatalysts for ORR and Zn–air batteries.  相似文献   

12.
The electrochemical reduction reaction of nitrogenous species such as NO3 (NO3RR) and N2 (NRR) is a promising strategy for producing ammonia under ambient conditions. However, low activity and poor selectivity of both NO3RR and NRR remain the biggest problem of all current electrocatalysts. In this work, we fabricated Cu-nanosphere film with a high surface area and dominant with a Cu(200) facet by simple electrodeposition method. The Cu-nanosphere film exhibits high electrocatalytic activity for NO3RR and NRR to ammonia under ambient conditions. In the nitrate environment, the Cu-nanosphere electrode reduced NO3 to yield NH3 at a rate of 5.2 mg/h cm2, with a Faradaic efficiency of 85 % at −1.3 V. In the N2-saturated environment, the Cu-nanosphere electrode reduced N2 to yield NH3 with the highest yield rate of 16.2 μg/h cm2 at −0.5 V, and the highest NH3 Faradaic efficiency of 41.6 % at −0.4 V. Furthermore, the Cu-nanosphere exhibits excellent stability with the NH3 yield rate, and the Faradaic efficiency remains stable after 10 consecutive cycles. Such high levels of NH3 yield, selectivity, and stability at low applied potential are among the best values currently reported in the literature.  相似文献   

13.
Although two-dimensional (2D) metal oxide/sulfide hybrid nanostructures have been synthesized, the facile preparation of ultrathin 2D nanosheets in high yield still remains a challenge. Herein, we report the first high-yield preparation of solution-processed ultrathin 2D metal oxide/sulfide hybrid nanosheets, that is, TixTa1−xSyOz (x=0.71, 0.49, and 0.30), from TixTa1−xS2 precursors. The nanosheet exhibits strong absorbance in the near-infrared region, giving a large extinction coefficient of 54.1 L g−1 cm−1 at 808 nm, and a high photothermal conversion efficiency of 39.2 %. After modification with lipoic acid-conjugated polyethylene glycol, the nanosheet is a suitable photothermal agent for treatment of cancer cells under 808 nm laser irradiation. This work provides a facile and general method for the preparation of 2D metal oxide/sulfide hybrid nanosheets.  相似文献   

14.
Few-layered black phosphorus (BP) is a two-dimensional material that has attracted intensive attention for applications in energy storage and catalysis due to its large surface area and good electrical and thermal conductivity. Herein, a comparable study of BP electrochemical exfoliation in various solutions of tetrabutylammonium salts (TBAX; X is PF6, BF4, and ClO4) in DMSO is reported. Based on morphological and structural analyses, it is shown that TBAPF6/DMSO medium was specifically appropriate for the production of high-quality BP nanosheets with micrometer lateral size and a thickness of about 2.4 nm. TBAPF6/DMSO-processed, few-layered BP exhibits enhanced hydrogen evolution reaction (HER) catalytic activity compared with that of samples exfoliated with the assistance of BF4 and ClO4 ions. Finally, the fabrication of flexible, free-standing BP films and their performance in an all-solid-state supercapacitor device are demonstrated.  相似文献   

15.
The complexes of metal center and nitrogen ligands are the most representative systems for catalyzing hydrogenation reactions in small molecule conversion. Developing heterogeneous catalysts with similar active metal-nitrogen functional centers, nevertheless, still remains challenging. In this work, we demonstrate that the metal-nitrogen coupling in anti-perovskite Co4N can be effective modulated by Cu doping to form Co3CuN, leading to strongly promoted hydrogenation process during electrochemical reduction of nitrate (NO3RR) to ammonia. The combination of advanced spectroscopic techniques and density functional theory calculations reveal that Cu dopants strengthen the Co−N bond and upshifted the metal d-band towards the Fermi level, promoting the adsorption of NO3 and *H and facilitating the transition from *NO2/*NO to *NO2H/*NOH. Consequently, the Co3CuN delivers noticeably better NO3RR activity than the pristine Co4N, with optimal Faradaic efficiency of 97 % and ammonia yield of 455.3 mmol h−1 cm−2 at −0.3 V vs. RHE. This work provides an effective strategy for developing high-performance heterogeneous catalyst for electrochemical synthesis.  相似文献   

16.
《化学:亚洲杂志》2017,12(16):2127-2133
In this work, β‐Co(OH)2 nanosheets are explored as efficient pseudocapacitive materials for the fabrication of 1.6 V class high‐energy supercapacitors in asymmetric fashion. The as‐synthesized β‐Co(OH)2 nanosheets displayed an excellent electrochemical performance owing to their unique structure, morphology, and reversible reaction kinetics (fast faradic reaction) in both the three‐electrode and asymmetric configuration (with activated carbon, AC). For example, in the three‐electrode set‐up, β‐Co(OH)2 exhibits a high specific capacitance of ∼675 F g−1 at a scan rate of 1 mV s−1. In the asymmetric supercapacitor, the β‐Co(OH)2∥AC cell delivers a maximum energy density of 37.3 Wh kg−1 at a power density of 800 W kg−1. Even at harsh conditions (8 kW kg−1), an energy density of 15.64 Wh kg−1 is registered for the β‐Co(OH)2∥AC assembly. Such an impressive performance of β‐Co(OH)2 nanosheets in the asymmetric configuration reveals the emergence of pseudocapacitive electrodes towards the fabrication of high‐energy electrochemical charge storage systems.  相似文献   

17.
The design and synthesis of metal-free catalysts with superior electrocatalytic activity, high durability, low cost, and under mild conditions is extremely desirable but remains challenging. To address this problem, a polymer-assisted electrochemical exfoliation technique of graphite in the presence of an aqueous acidic medium is reported. This simple, cost-effective, and mass-scale production approach could open the possibility for the synthesis of high-quality nitrogen-doped graphene–polypyrrole (NG-PPy). The NG-PPy catalyst displays an improved half wave potential (E1/2=0.77 V) in alkaline medium compared with G-PPy (E1/2=0.66 V). Most importantly, this catalyst demonstrates excellent stability with high methanol tolerance, and it outperforms the commercial Pt/C catalyst and other previously reported metal-free catalysts. The content of graphitic nitrogen atoms is the key factor for the enhancement of electrocatalytic activity towards oxygen reduction reactions (ORR). Interestingly, the NG-PPy catalyst can be used as a cathode material in a zinc–air battery, which demonstrates a higher peak power density (59 mW cm−2) than G-PPy (36.6 mW cm−2), highlighting the importance of the low-cost material synthesis approach towards the development of metal-free efficient ORR catalysts for fuel cell and metal–air battery applications. Remarkably, the polymer-assisted electrophoretic exfoliation of graphite with a high yield (≈88 wt %) of few-layer graphene flakes could pave the way towards the mass production of high-quality graphene for a variety of applications.  相似文献   

18.
Single-atom catalysts offer a promising pathway for electrochemical CO2 conversion. However, it is still a challenge to optimize the electrochemical performance of dual-atom catalysts. Here, an atomic indium-nickel dual-sites catalyst bridged by an axial oxygen atom (O-In-N6-Ni moiety) was anchored on nitrogenated carbon (InNi DS/NC). InNi DS/NC exhibits superior CO selectivity with Faradaic efficiency higher than 90 % over a wide potential range from −0.5 to −0.8 V versus reversible hydrogen electrode (vs. RHE). Moreover, an industrial CO partial current density up to 317.2 mA cm−2 is achieved at −1.0 V vs. RHE in a flow cell. In situ ATR-SEIRAS combined with theory calculations reveal that the synergistic effect of In-Ni dual-sites and O atom bridge not only reduces the reaction barrier for the formation of *COOH, but also retards the undesired hydrogen evolution reaction. This work provides a feasible strategy to construct dual-site catalysts towards energy conversion.  相似文献   

19.
The utilization of nickel hydroxide and manganese dioxide solely as high-performance supercapacitive materials is hindered by their low capacitance retention and electrical conductivity. As Ni(OH)2 and MnO2 give a synergistic effect, porous Ni(OH)2-MnO2 nanosheets with a thickness of 9 nm are successfully grown on carbon fiber (CF) via a single-step hydrothermal co-deposition method. Multi-walled carbon nanotubes (CNT) are grafted with maleic anhydride (MA) through plasma-grafted process, followed by thiol-ene reaction to synthesize CNT-MA−S (CMS) to increase their aqueous dispersion behavior. The electrochemical properties of Ni(OH)2-MnO2 are further enhanced by dip-coating CMS on nanosheets. The composition and morphology of CMS and Ni(OH)2-MnO2 nanosheets are characterized using scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), electron spectroscopy for chemical analysis (ESCA), transmission electron microscopy (TEM), thermogravimetric analyses (TGA), nuclear magnetic resonance (NMR), and Raman spectroscopy. The electrochemical characteristics of fabricated electrodes are analyzed using cyclic voltammetry and chronopotentiometry methods. CF−Ni(OH)2-MnO2/CMS electrode is successfully synthesized without using any binder, exhibited ultrahigh specific capacitance (2049 F g−1 at a current density of 1 A g−1), and excellent capacitance retention (>80 %) at 2 A g−1 charge/discharge rate after 5000 cycles.  相似文献   

20.
Biomass derived carbon materials are widely available, cheap and abundant resources. The application of these materials as electrodes for rechargeable batteries shows great promise. To further explore their applications in energy storage fields, the structural design of these materials has been investigated. Hierarchical porous heteroatom-doped carbon materials (HPHCs) with open three-dimensional (3D) nanostructure have been considered as highly efficient energy storage materials. In this work, biomass soybean milk is chosen as the precursor to construct N, O co-doped interconnected 3D porous carbon framework via two approaches by using soluble salts (NaCl/Na2CO3 and ZnCl2/Mg5(OH)2(CO3)4, respectively) as hard templates. The electrochemical results reveal that these structures were able to provide a stable cycling performance (710 mAh ⋅ g−1 at 0.1 A ⋅ g−1 after 300 cycles for HPHC-a, and 610 mAh ⋅ g−1 at 0.1 A ⋅ g−1 after 200 cycles for HPHC-b) in Li-ion battery and Na-ion storage (210 mAh ⋅ g−1 at 0.1 A ⋅ g−1 after 900 cycles for HPHC-a) as anodes materials, respectively. Further comparative studies showed that these improvements in HPHC-a performance were mainly due to the honeycomb-like structure containing graphene-like nanosheets and high nitrogen content in the porous structures. This work provides new approaches for the preparation of hierarchically structured heteroatom-doped carbon materials by pyrolysis of other biomass precursors and promotes the applications of carbon materials in energy storage fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号