首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reactions of [(η7-C7H7)Hf(η5-C5H5)] (1b) with the two-electron donor ligands tert-butyl isocyanide (tBuNC), 2,6-dimethylphenyl isocyanide (XyNC), 1,3,4,5-tetramethylimidazolin-2-ylidene (IMe) and trimethylphosphine (PMe3) are reported. The 1:1 complexes [(η7-C7H7)Hf(η5-C5H5)L] (2b, L = tBuNC; 3b, L = XyNC; 4b, L = IMe, 5b, L = PMe3) have been isolated in crystalline form, and their molecular structures have been determined by X-ray diffraction analyses. The stabilities of these hafnium complexes were probed via spectroscopic and theoretical methods, and the results were compared to those previously reported for the corresponding zirconium complexes derived from [(η7-C7H7)Zr(η5-C5H5)] (1a). The X-ray crystal structure of the PMe3 adduct [(η7-C7H7)Zr(η5-C5H5)(PMe3)] (5a) was also established.  相似文献   

2.
The synthesis and characterization of heteroleptic complexes with the formulations [(η6-arene)RuCl(fcdpm)] (η6-arene = C6H6, C10H14) and [(η5-C5Me5)MCl(fcdpm)] (M = Rh, Ir; fcdpm = 5-ferrocenyldipyrromethene) have been reported. All the complexes have been characterized by elemental analyses, IR, 1H NMR and electronic spectral studies. Structures of [(η6-C6H6)RuCl(fcdpm)] and [(η6-C10H14)RuCl(fcdpm)] have been determined crystallographically. Chelating monoanionic linkage of fcdpm to the respective metal centres has been supported by spectral and structural studies. Further, reactivity of the representative complex [(η6-C10H14)RuCl(fcdpm)] with ammonium thiocyanate (NH4SCN) and triphenylphosphine (PPh3) have been examined.  相似文献   

3.
Ruthenium tetrazene complexes with general formula [Cp*RuCl(1,4-R2N4)] (Cp* = η5-C5Me5), where R = benzyl ( 1 ), 2-fluorobenzyl ( 2 ), β-d -glucopyranosyl-unprotected ( 3a ) and acyl-protected ( 3b – d ), 2-acetamido-β-d -glucopyranosyl-unprotected ( 4a ) and acyl-protected ( 4b – d ), propyl-β-d -glucopyranoside-unprotected ( 5a ), and O-acetylated ( 5b ), were synthesized and characterized using nuclear magnetic resonance and electrospray ionization–mass spectrometry. In addition, the molecular structure of 3b was determined using X-ray crystallography. The cytotoxicity of complexes against ovarian (A2780, SK-OV-3) and breast (MDA-MB-231) cancer cell lines and noncancerous cell line HEK-293 was evaluated and compared to cisplatin activity. The carbohydrate-modified complexes bearing acyl-protecting groups exhibited higher efficacy (in low micromolar range) than unprotected ones, where the most active 4d was superior to cisplatin up to five times against all investigated cancer cell lines; however, no significant selectivity was achieved. The complex induced apoptotic cell death at low micromolar concentrations (0.5 μM for A2780 and HEK293; 2 μM for SK-OV-3 and MDA-MB-231).  相似文献   

4.
Fifteen organometallic Ir(III) half‐sandwich complexes ( 1A – 5C ) having the general formula [(η5‐Cpx)Ir(N^N)Cl]PF6 (Cpx = Cp*, tetramethyl(phenyl)cyclopentadienyl (Cpxph) or tetramethyl(biphenyl)cyclopentadienyl (Cpxbiph); N^N = diamine) have been synthesized and characterized. The molecular structure of 1A was determined using single‐crystal X‐ray diffraction analysis. The hydrolysis of 1A – 5C was monitored using UV–visible spectra. Complexes 3A – 3C showed catalytic activity for the oxidation of NADH to NAD+, where 3C showed the highest turnover number of 29.9 within 450 min. Cytotoxicity examination by MTT assay was carried out against two human cancer cell lines (HeLa and A549) after 24 or 48 h drug treatment. The complexes showed high potency, where the most potent complex ( 3C ; IC50 = 3.4 μM) was six times more active than cisplatin against A549 cells after 24 h drug exposure. Cytotoxic potency towards A549 cells increased with phenyl substitution on Cp ring: Cpxbiph > Cpxph > Cp*. In addition, the biological studies showed that 3C caused cell apoptosis and cell cycle arrest at G1 phase in A549 cancer cells. Moreover, 3C increased the level of reactive oxygen species markedly after 24 h, which may provide an important basis for killing cancer cells. Confocal laser scanning microscopy was used to track 3C in A549 cells. The cellular localization experiment showed that 3C targeted lysosomes and caused lysosomal damage.  相似文献   

5.
The reaction of [(p‐cymene)RuCl2]2 and [Cp*MCl2]2 (M = Rh/Ir) with benzoyl (2‐pyrimidyl) thiourea (L1) and benzoyl (4‐picolyl) thiourea (L2) led to the formation of cationic complexes bearing formula [(arene) M (L1)к2 (N,S) Cl]+ and [(arene) M (L2)к2(N,S)Cl]+ [(arene) = p‐cymene, M = Ru, ( 1 , 4 ); Cp*, M = Rh ( 2 , 5 ) and Ir ( 3 , 6 )]. Precursor compounds reacted with benzoyl (6‐picolyl) thiourea (L3) affording neutral complexes having formula [(arene) M (L3)к1(S)Cl2] [arene = p‐cymene, M = Ru, ( 7 ); Cp*, M = Rh ( 8 ), Ir ( 9 )]. X‐ray studies revealed that the methyl substituent attached to the pyridine ring in ligands L2 and L3 affects its coordination mode. When methyl group is at the para position of the pyridine ring (L2), the ligand coordinated metal in a bidentate chelating N, S‐ mode whereas methyl group at ortho position (L3), it coordinated in a monodentate mode. Further the anti‐cancer studies of the thiourea derivatives and its complexes carried out against HCT‐116, HT‐29 (human colorectal cancer), Mia‐PaCa‐2 (human pancreatic cancer) and ARPE‐19 (non‐cancer retinal epithelium) cell lines showed that the thiourea ligands are inactive but upon complexation, the metal compounds displayed potent and selective activity against cancer cells in vitro. Iridium complexes were found to be more potent as compared to ruthenium and rhodium complexes.  相似文献   

6.
Half‐sandwich ruthenium, rhodium and iridium complexes ( 1 – 12 ) were synthesized with aldoxime ( L1 ), ketoxime ( L2 ) and amidoxime ( L3 ) ligands. Ligands have the general formula [PyC(R)NOH], where R = H ( L1 ), R = CH3 ( L2 ) and R = NH2 ( L3 ). Reaction of [{(arene)MCl2}2] (arene = p ‐cymene, benzene, Cp*; M = Ru, Rh, Ir) with ligands L1 – L3 in 1:2 metal precursor‐to‐ligand ratio yielded complexes such as [{(arene)MLκ2(N∩N)Cl}]PF6. All the ligands act as bidentate chelating nitrogen donors in κ2(N∩N) fashion while forming complexes. In vitro anti‐tumour activity of complexes 2 and 10 against HT‐29 (human colorectal cancer), BE (human colorectal cancer) and MIA PaCa‐2 (human pancreatic cancer) cell lines and non‐cancer cell line ARPE‐19 (human retinal epithelial cells) revealed a comparable activity although complex 2 demonstrated greater selectivity for MIA PaCa‐2 cells than cisplatin. Further studies demonstrated that complexes 3 , 6 , 9 and 12 induced significant apoptosis in Dalton's ascites lymphoma (DL) cells. In vivo anti‐tumour activity of complex 2 on DL‐bearing mice revealed a statistically significant anti‐tumour activity (P  = 0.0052). Complexes 1 – 12 exhibit HOMO–LUMO energy gaps from 3.31 to 3.68 eV. Time‐dependent density functional theory calculations explain the nature of electronic transitions and were in good agreement with experiments.  相似文献   

7.
Density functional calculations at the BP86/TZ2P level are reported for the pseudo-octahedral heteroarene complexes M(η1-EC5H5)6 and for the sandwich complexes M(η6-EC5H5)2 (M = Cr, Mo, W; E = N, P, As, Sb, Bi). The complexes M(CO)6 and M(η6-C6H6)2 have been calculated for comparison. The nature of the metal–ligand interactions was analyzed with the EDA (energy decomposition analysis) method. The calculated bond dissociation energies (BDE) of M(η1-EC5H5)6 have the order for E = P > As > N > Sb ? Bi and for M = Cr < Mo < W. All hexaheteroarenes bind more weakly than CO in M(CO)6. Except for pyridine, which is the weakest η6-bonded ligand, the trend in the BDE of the M(η6-EC5H5)2 complexes is opposite to the trend of the M(η1-EC5H5)6 complexes NC5H5 < PC5H5 < AsC5H5 < SbC5H5 < BiC5H5. The opposite trend is explained with the different binding modes in M(η6-EC5H5)2 and M(η1-EC5H5)6. The bonding in the former complexes mainly takes place through the π electrons of the ligand which are delocalized over the ring atoms while the bonding in the latter takes place through the lone-pair electrons of the heteroatoms E. The Lewis basicity of the group-15 heterobenzenes EC5H5 becomes weaker for the heavier elements E. The occupied π orbitals of the heterobenzene ring become gradually more polarized toward the five carbon atoms in the heavier arenes EC5H5 which induces stronger metal-carbon bonds in M(η6-EC5H5)2 and weaker metal-E bonds. The EDA calculations show that the nature of the M-EC5H5 bonding in M(η1-EC5H5)6 is similar to the M–CO bonding in M(CO)6. Both types of bonds have a slightly more covalent than electrostatic character. The π orbital interactions in the chromium and molybdenum complexes of CO and heterobenzene are more important than the σ interactions. This holds true also for the tungsten complexes of CO and the lighter heteroarenes while the σ- and π-bonding in the heavier W(η1-EC5H5)6 species have similar strength. The EDA results also show that the nature of the bonding in the sandwich complexes M(η6-EC5H5)2 is very similar to the bonding in the bisbenzene complexes M(η6-C6H6)2. The orbital interactions contribute for all metals and all arene ligands about 60% of the attractive interactions while the electrostatic attraction contributes about 40%. The largest contribution to the orbital term comes always from the δ orbitals. The calculations predict that the relative stability of the sandwich complexes M(η6-EC5H5)2 over the octahedral species M(η1-EC5H5)6 increases when E becomes heavier and it increases from W to Mo to Cr when E = N, P, As.  相似文献   

8.
This review covers comprehensively the authors work during the present decade based on the chemistry of ionic organometallic hydrazines formulated as [(η5-Cp′)Fe(η6-Ar-NHNH2)]+PF6? (Cp′ = C5H5, C5Me5; Ar = aryl), that could be considered as a new generation of hydrazines owing to the changes provoked by the coordination of the 12-electron Cp′Fe+ fragment both in the electronic properties of the aromatic ring and in the hydrazine group. The reactivity of this new class of hydrazine is obviously centered, as in the classic Fischer's organohydrazines, Ar-NHNH2, on the –NHNH2 functional unit which is able to react with aldehydes, RCH(O) (R = alkyl, aryl, ferrocenyl (Fc)) and ketones, RR′CO (R = alkyl, aryl; R′ = alkyl, aryl, Fc), to afford ionic organometallic hydrazones. Likewise, the mixed-sandwich hydrazine precursors react with β-diketones Me–C(O)–CH2–C(O)–Me to afford ionic organometallic pyrazoles, and with cis-dioxo-molybdenum complexes, e.g. [MoO2(S2CNEt2)2], to afford ionic organometallic mono-organodiazenido complexes in which the two metal centers are connected by a μ,η61-aryldiazenido bridge. While some ionic hydrazones exhibit NLO properties, the ionic organodiazenido hybrid complexes exhibit charge-transfer features.  相似文献   

9.
Six novel organometallic half sandwich complexes [(η5‐C5Me5)M(L1–3)Cl]Cl.2H2O were synthesized using [{(η5‐C5Me5)M(μ‐Cl)Cl2], where M = Ir (III)/Rh (III) and L1–3 = three pyridyl pyrimidine based ligands; and characterized by NMR, Infra‐red spectroscopy, conductance, elemental and thermal analysis. The complex‐DNA binding mode and/or strength evaluated using absorption titration, electrochemical studies and hydrodynamic measurement proposed intercalative binding mode, which was also confirmed by molecular docking study. Differential pulse voltammetry and cyclic voltammetry studies indicated an alteration in oxidation and reduction potentials of complexes (M+4/M+3) in presence of CT‐DNA. The metal complexes can cleave plasmid DNA as proposed in gel electrophoretic analysis. The LC50 values of complexes evaluated on brine shrimp suggested their potent cytotoxic nature.  相似文献   

10.
Cp-functionalized monotroticenes [(η7-C7H7)Ti(η5-C5H4E)] (2, E = Ph2SiCl; 3, E = tBu2SnCl; 12, E = I) and bitroticenes [(η7-C7H7)Ti(η5-C5H4)]2E′ (5, E′ = PPh; 6, E′ = BN(SiMe3)2; 7, E′ = Cp2Ti) were prepared by salt elimination metathesis between the monolithiated troticene [(η7-C7H7)Ti(η5-C5H4Li)]·pmdta (1b) (pmdta = N,N′,N′,N″,N″-pentamethyldiethylene-triamine) and the appropriate electrophile. The troticenyl-substituted zirconocene monochloride [(η7-C7H7)Ti(η5-C5H4ZrClCp*2)] (Cp* = η5-C5Me5) (8) and hafnocene ethoxide [(η7-C7H7)Ti{η5-C5H4Hf(OEt)Cp2}] (Cp = η5-C5H5) (11), and the heterobimetallic μ-oxo complexes [(η7-C7H7)Ti(η5-C5H4MCp2)]2O (9, M = Zr; 10, M = Hf) were obtained instead of the expected zircona- and hafna[1]troticenophanes by reaction of the dilithiated troticene [(η7-C7H6Li)Ti(η5-C5H4Li)]·pmdta (1a) with [Cp2MCl2] (M = Zr, Hf) or [Cp*2ZrCl2] in stoichiometric amounts. These compounds were characterized by single crystal X-ray diffraction analyses and, in the case of 2, 3, 57, 9, 10 and 12, also by elemental analyses and 1H, 13C and 119Sn NMR spectroscopy. Exposure of the troticenyl organotin chloride 3 to moisture resulted in its partial hydrolysis and formation of the organostannoxane-bridged bitroticene 4, while palladium-catalyzed Negishi C–C cross-coupling reaction between the troticenylzinc chloride [(η7-C7H7)Ti(η5-C5H4ZnCl)] (13) and the iodotroticene 12 or iodobenzene (PhI) led to the fulvalene complexes [(η7-C7H7)Ti(η5-C5H4)]2 (14) and [(η7-C7H7)Ti(η5-C5H4Ph)] (15). Compound 4 displays an unsymmetrical structure with the troticenyl fragments cis with respect to the Sn–O–Sn core, whereas compound 14 is centrosymmetrically trans oriented.  相似文献   

11.
Cp-functionalized monotroticenes [(η7-C7H7)Ti(η5-C5H4E)] (2, E = Ph2SiCl; 3, E = tBu2SnCl; 12, E = I) and bitroticenes [(η7-C7H7)Ti(η5-C5H4)]2E′ (5, E′ = PPh; 6, E′ = BN(SiMe3)2; 7, E′ = Cp2Ti) were prepared by salt elimination metathesis between the monolithiated troticene [(η7-C7H7)Ti(η5-C5H4Li)]·pmdta (1b) (pmdta = N,N′,N′,N″,N″-pentamethyldiethylene-triamine) and the appropriate electrophile. The troticenyl-substituted zirconocene monochloride [(η7-C7H7)Ti(η5-C5H4ZrClCp*2)] (Cp* = η5-C5Me5) (8) and hafnocene ethoxide [(η7-C7H7)Ti{η5-C5H4Hf(OEt)Cp2}] (Cp = η5-C5H5) (11), and the heterobimetallic μ-oxo complexes [(η7-C7H7)Ti(η5-C5H4MCp2)]2O (9, M = Zr; 10, M = Hf) were obtained instead of the expected zircona- and hafna[1]troticenophanes by reaction of the dilithiated troticene [(η7-C7H6Li)Ti(η5-C5H4Li)]·pmdta (1a) with [Cp2MCl2] (M = Zr, Hf) or [Cp*2ZrCl2] in stoichiometric amounts. These compounds were characterized by single crystal X-ray diffraction analyses and, in the case of 2, 3, 57, 9, 10 and 12, also by elemental analyses and 1H, 13C and 119Sn NMR spectroscopy. Exposure of the troticenyl organotin chloride 3 to moisture resulted in its partial hydrolysis and formation of the organostannoxane-bridged bitroticene 4, while palladium-catalyzed Negishi C–C cross-coupling reaction between the troticenylzinc chloride [(η7-C7H7)Ti(η5-C5H4ZnCl)] (13) and the iodotroticene 12 or iodobenzene (PhI) led to the fulvalene complexes [(η7-C7H7)Ti(η5-C5H4)]2 (14) and [(η7-C7H7)Ti(η5-C5H4Ph)] (15). Compound 4 displays an unsymmetrical structure with the troticenyl fragments cis with respect to the Sn–O–Sn core, whereas compound 14 is centrosymmetrically trans oriented.  相似文献   

12.
The new dialkynylated complexes Ru(η6-DEB-Si)(η4-COD), 4a, Ru(η6-DEBP-Si)(η4-COD), 4b1, Ru266-DEBP)(η4-COD)2, 4b2 [COD = 1,5-cyclooctadiene; DEB-Si = 1,4-bis(trimethylsilylethynyl)benzene; DEBP-Si = 4,4′-bis(trimethylsilylethynyl)biphenyl] have been synthesized by the arene exchange reaction with the complex Ru(η6-naphthalene)(η4-COD). The complexes Ru(η6-DEB)(η4-COD), 5a, and Ru(η6-DEBP)(η4-COD), 5b1, have been prepared by desilylation of the corresponding compounds 4a and 4b1. All the complexes have been fully characterized by means of spectroscopic techniques.  相似文献   

13.
A series of trinuclear Cu(II) complexes have been prepared by Schiff base condensation of 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-l,4,8,11-tetraazacyclotetradecane and 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-l,4,8,11-tetraazacyclotetradecane with aromatic and aliphatic diamines, Cu(II) perchlorate and triethylamine. The complexes were characterized by elemental and spectroscopic analysis. Electrochemical studies of the complexes in DMF solution show three irreversible one-electron reduction processes around Epc 1 = −0.73 to −0.98 V, Epc 2 = −0.91 to −1.20 V and Epc 3 = −1.21 to −1.33 V. ESR spectra and magnetic moments of the trinuclear Cu(II) complexes show the presence of antiferromagnetic coupling. The rate constants for hydrolysis of 4-nitrophenylphosphate by the Cu(II) complexes are in the range of 3.33 × 10−2 to 7.58 × 10−2 min−1. The rate constants for the catecholase activity of the complexes fall in the range of 2.67 × 10−2 to 7.56 × 10−2 min−1. All the complexes were screened for antifungal and antibacterial activity.  相似文献   

14.
Seven Cd(II)–ferrocenesuccinate coordination complexes with the formulas [Cd(η2-FcCOC2H4COO)2(pbbbm)]2 (1), [Cd(η2-FcCOC2H4COO)(pbbbm)Cl]2 (2), [Cd(η2-FcCOC2H4COO)(pbbbm)I]2 (3), {[Cd(η2-FcCOC2H4COO)2(btx)2]2(CH3OH)0.5} (4), [Cd(η2-FcCOC2H4COO)2(bix)]2(H2O) (5), {[Cd(η2-FcCOC2H4COO)(bbbm)1.5Cl] · (CH3OH)0.5}n (6), and {[Cd(η2-FcCOC2H4COO)(mbbbm)Cl] · (H2O)2.75}n (7) [pbbbm = 1,4-Bis(benzimidazole-1-ylmethyl)benzene), btx = 1,4-bis(triazol-1-ylmethyl)benzene), mbbbm = 1,3-bis(benzimidazole-1-ylmethyl)benzene), bix = 1,4-bis(imidazol-1-ylmethyl)benzene, bbbm = 1,1-(1,4-Butanediyl)bis-1H-benzimidazole)] have been synthesized and characterized. Single-crystal X-ray analysis reveals that complexes 15 are all dimers and bridged by pbbbm, btx and bix, respectively. But the five complexes present some differences in their dimeric conformations, which can be ascribed to the impacts of adjuvant ligands and counter anions. In contrast to complexes 1–5, both 6 and 7 are of 1-D structures (with the same counter anions), and the former is double ladder-like structure only bridged by bbbm, while the latter is chain-like structure bridged by chlorine anions and adjuvant ligand mbbbm. Notably, various π–π interactions are found in complexes 17, and they have significant contributions to molecular self-assembly processes. The electrochemical studies of complexes 17 in DMF solution display irreversible redox waves and indicate that the half-wave potentials of the ferrocenyl moieties in these complexes are all shifted to positive potential compared with that of ferrocenesuccinate.  相似文献   

15.
New mixed ligand complexes of transition metals were synthesized from a Schiff base (L1) obtained by the condensation reaction of oxamide and furfural as primary ligand and 2,2′‐bipyridine (L2) as secondary ligand. The ligands and their metal complexes were studied using various spectroscopic methods. Also thermal analyses were conducted. The mixed ligand complexes were found to have formulae [M(L1)(L2)]Clm n H2O (M = Cr(III) and Fe(III): m  = 3, n  = 0; M = Cu(II) and Cd(II): m  = 2, n  = 1; M = Mn(II), Co(II), Ni(II) and Zn(II): m  = 2, n  = 0). The resultant data revealed that the metal complexes have octahedral structure. Also, the mixed ligand complexes are electrolytic. The biological and anticancer activities of the new compounds were tested against breast cancer (MCF‐7) and colon cancer (HCT‐116) cell lines. The results showed high activity for the synthesized compounds.  相似文献   

16.
Density Functional Theory calculations have been performed for the halophenylgallyl complexes of iron, ruthenium and osmium [(η5-C5H5)(CO)2M(Ga(X)Ph)] (M = Fe, Ru, Os; X = Cl, Br, I) at the DFT/BP86/TZ2P/ZORA level of theory. The calculated geometry of iron complexes [(η5-C5H5)(CO)2Fe(Ga(Cl)Ph)] and [(η5-C5H5)(CO)2Fe(Ga(I)Ph)] is in excellent agreement with structurally characterized complexes [(η5-C5H5)(CO)2Fe(Ga(Mes)Cl)], [(η5-C5Me5)(CO)2Fe(Ga(Mes)Cl)] and [(η5-C5Me5)(CO)2Fe(Ga(Mes)I)] (Mes = C6H2Me3-2,4,6; Mes = C6H2tBu3-2,4,6). The M-Ga bond distances as well as Mayer bond order of the M-Ga bonds suggest that the M-Ga bonds in these complexes are nearly M-Ga single bond. The π-bonding component of the total orbital contribution is significantly smaller than that of σ-bonding. Thus, in these complexes the Ga(X)Ph ligand behaves predominantly as a σ-donor. The contributions of the electrostatic interaction terms ΔEelstat are significantly smaller in all gallyl complexes than the covalent bonding ΔEorb term. The absolute values of the ΔEPauli, ΔEint and ΔEelstat contributions to the M-Ga bonds increase in both sets of complexes via the order Fe < Ru < Os. In the complexes [(η5-C5H5)(Me3P)2Fe(Ga(X)Ph)] (X = Cl, Br, I), interaction energy as well as bond dissociation energy decrease upon going from X = Cl to X = I.  相似文献   

17.
p-Cymene complexes MCl26-p-cymene)L [M = Ru, Os; L = P(OEt)3, PPh(OEt)2, (CH3)3CNC] were prepared by allowing [MCl(μ-Cl)(η6-p-cymene)]2 to react with phosphites or tert-butyl isocyanide. Treatment of MCl26-p-cymene)L complexes with 1,3-ArNNN(H)Ar triazene and an excess of NEt3 gave the cationic triazenide derivatives [M(η2-1,3-ArNNNAr)(η6-p-cymene)L]BPh4 (Ar = Ph, p-tolyl). Neutral triazenide complexes MCl(η2-1,3-ArNNNAr)(η6-p-cymene) (M = Ru, Os) were also prepared by allowing [MCl(μ-Cl)(η6-p-cymene)]2 to react with 1,3-diaryltriazene in the presence of triethylamine. p-Cymene complexes MCl26-p-cymene)L reacted with equimolar amounts of 1,3-ArNNN(H)Ar triazene to give both triazenide complexes [M(η2-1,3-ArNNNAr)(η6-p-cymene)L]BPh4 and amine derivatives [MCl(ArNH2)(η6-p-cymene)L]BPh4. A reaction path for the formation of the amine complex is also reported. The complexes were characterised by spectroscopy and X-ray crystallography of RuCl26-p-cymene)[PPh(OEt)2] and [Ru(η2-1,3-p-tolyl-NNN-p-tolyl)(η6-p-cymene){CNC(CH3)3}]BPh4. Selected triazenide complexes were studied as catalysts in the hydrogenation of 2-cyclohexen-1-one and cinnamaldehyde.  相似文献   

18.
Three new complexes, [(η6-C6H6)RuCl(C5H4N-2-CH=N-Ar)]PF6 (Ar = phenylmethylene (1), (4-methoxyphenyl)methylene (2), and phenylhydrazone (3)), were prepared by reacting [(η6-C6H6)Ru(μ-Cl)Cl]2 with N,N′-bidentate ligands in a 1 : 2 ratio. Full characterization of the complexes was accomplished using 1H and 13C NMR, elemental and thermal analyses, UV–vis and IR spectroscopy and single crystal X-ray structures. Single crystal structures confirmed a pseudo-octahedral three-legged, piano-stool geometry around Ru(II), with the ligand coordinated to the ruthenium(II) through two N atoms. The cytotoxicity of the mononuclear complexes was established against three human cancer cell lines and selectivity was also tested against non-cancerous human epithelial kidney (HEK 293) cells. The compounds were selective toward the tumor cells in contrast to the known anti-cancer drug 5-fluoro uracil which was not selective between the tumor cells and non-tumor cells. All the compounds showed moderate activity against MCF7 (human breast adenocarcinoma), but showed low antiproliferative activity against Caco-2 and HepG2. Also, antimicrobial activities of the complexes were tested against a panel of antimicrobial-susceptible and -resistant Gram-negative and Gram-positive bacteria. Of special interest is the anti-mycobacterial activity of all three synthesized complexes against Mycobacterium smegmatis, and bactericidal activity against resistant Enterococcus faecalis and methicillin-resistant Staphylococcus aureus ATCC 43300.  相似文献   

19.
Neutral and cationic cyclopentadienone (CpO) N‐heterocyclic carbene (NHC) bis‐carbonyl iron(0) complexes bearing, appended to the NHC ligand, either a terminal amino group on the lateral chain, [Fe(η4‐CpO)(CO)2C‐NHC(CH2)nNH2)] with n = 2 ( 2a ) and 3 ( 2b ), or a cationic NMe3+ fragment, [Fe(η4‐CpO)(CO)2C‐NHC(CH2)2NMe3)](I) ( 3 ), were prepared and characterized in terms of their structure, stability and reactivity. The photochemical properties of 2a and 2b were examined both in organic solvents and in water, revealing the photoactivated release of one CO ligand followed by the formation of the chelated complex [Fe(η4‐CpO)(CO)(κ2C,N‐NHC(CH2)2NH2)] ( 4 ), whose molecular structure was confirmed by single crystal X‐ray diffraction studies. This metallacyclization occurs only in the case of 2a , with the ethylene spacer between NHC ring and NH2 group in the lateral chain, allowing the formation of a stable 6‐membered ring. On the other hand, 2b undergoes decomposition upon irradiation. The reactivity in aqueous solutions revealed the chemical speciation of the complexes at different pH and especially under physiological conditions (phosphate buffer solution at pH 7.4 and 37 °C). The lack of data on the biological properties of iron(0) complexes prompted us to preliminarily investigate their cytotoxicity against model cancer cells (AsPC‐1 and HPAF‐II), along with a determination of their lipophilicity.  相似文献   

20.
The synthesis and properties of heterobimetallic Ti-M complexes of type {[[Ti](μ-η12-CCSiMe3)][M(μ-η12-CCSiMe3)(CO)4]} (M = Mo: 5, [Ti] = (η5-C5H5)2Ti; 6, [Ti] = (η5-C5H4SiMe3)2Ti; M = W: 7, [Ti] = (η5-C5H5)2Ti; 8, [Ti] = (η5-C5H4SiMe3)2Ti) and {[Ti](μ-η12-CCSiMe3)2}MO2 (M = Mo: 13, [Ti] = (η5-C5H5)2Ti; 14, [Ti] = (η5-C5H4SiMe3)2Ti). M = W: 15, [Ti] = (η5-C5H5)2Ti; 16, [Ti] = (η5-C5H4SiMe3)2Ti) are reported. Compounds 5-8 were accessible by treatment of [Ti](CCSiMe3)2 (1, [Ti] = (η5-C5H5)2Ti; 2, [Ti] = (η5-C5H4SiMe3)2Ti) with [M(CO)5(thf)] (3, M = Mo; 4, M = W) or [M(CO)4(nbd)] (9, M = Mo; 10, M = W; nbd = bicyclo[2.2.1]hepta-2,5-diene), while 13-16 could be obtained either by the subsequent reaction of 1 and 2 with [M(CO)3(MeCN)3] (11, M = Mo; 12, M = W) and oxygen, or directly by oxidation of 5-8 with air. A mechanism for the formation of 5-8 is postulated based on the in-situ generation of [Ti](CCSiMe3)((η2-CCSiMe3)M(CO)5), {[Ti](μ-η12-CCSiMe3)2}-M(CO)4, and [Ti](μ-η12-CCSiMe3)((μ-CCSiMe3)M(CO)4) as a result of the chelating effect exerted by the bis(alkynyl) titanocene fragment and the steric constraints imposed by the M(CO)4 entity.The molecular structure of 5 in the solid state were determined by single crystal X-ray diffraction analysis. In doubly alkynyl-bridged 5 the alkynides are bridging the metals Ti and Mo as a σ-donor to one metal and as a π-donor to the other with the [Ti](CCSiMe3)2Mo core being planar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号