共查询到20条相似文献,搜索用时 15 毫秒
1.
De‐Hui Tuo Chao Chen Huapeng Ruan Qi‐Qiang Wang Yu‐Fei Ao Xinping Wang De‐Xian Wang 《Angewandte Chemie (International ed. in English)》2020,59(33):14040-14043
Radical pimers are the simplest and most important models for studying charge‐transfer processes and provide deep insight into π‐stacked organic materials. Notably, radical pimer systems with magnetic bi‐ or multistability may have important applications in switchable materials, thermal sensors, and information‐storage media. However, no such systems have been reported. Herein, we describe a new pimer consisting of neutral N‐(n‐propyl) benzene triimide ([BTI‐3C]) and its anionic radical ([BTI‐3C]?.) that exhibits rare magnetic multistability. The crystalline pimer was readily synthesized by reduction of BTI‐3C with cobaltocene (CoCp2). The transition occurred with a thermal hysteresis loop that was 27 K wide in the range of 170–220 K, accompanied by a smaller loop with a width of 25 K at 220–242 K. The magnetic multistability was attributed to slippage of the π‐stacked BTI structures and entropy‐driven conformational isomerization of the side propyl chains in the crystalline state during temperature variation. 相似文献
2.
Dr. Konstantis F. Konidaris Marco Zambra Prof. Francesco Giannici Dr. Antonietta Guagliardi Prof. Norberto Masciocchi 《Angewandte Chemie (International ed. in English)》2023,62(45):e202310445
Perylene diimides (PDI) are workhorses in the field of organic electronics, owing to their appealing n-semiconducting properties. Optimization of their performances is widely pursued by bay-atom substitution and diverse imide functionalization. Bulk solids and thin-films of these species crystallize in a variety of stacking configurations, depending on the geometry of the stable conformation of the polyaromatic core. We here demonstrate that 1,7-dibromo-substituted perylene diimides, PDI(H2Br2), possessing a heavily twisted conformation in the gas phase, in solution and in the solids, can be easily flattened in the solid state into centrosymmetric molecules if the polyaromatic cores form π–π stabilized chains. This is achieved by using axial residues with low stereochemical hindrance, as guaranteed by a single CH2/NH spacer directly linked to the imide function. Structural powder diffraction and DFT calculations on four newly designed species of the PDI(H2Br2) class coherently show that, thanks to the flexibility of the N−X−Ar link (X=CH2/NH), flat cores are indeed obtained by overcoming the interconversion barrier between twisted atropoisomers, of only 26.5 kJ mol−1. This strategy may then be useful to induce “anomalously flat” polyaromatic cores of different kinds (substituted acenes/rylenes) in the solid state, towards suitable crystal packing and orbital interactions for improved electronic performances. 相似文献
3.
Herein, we present three imidazo[1,2‐a]pyridin‐2(3 H)‐one derivatives that are diamagnetic in solution, but paramagnetic in the solid state, possibly owing to a stacking‐induced formation of phenoxide‐type radicals. Notably, a larger bathochromic shift of the absorption (even up to the near‐ infrared region) of these three compounds was observed in the solid state than in solution, which was attributable to the ordered columnar stacking arrangements or their single‐electron character as radicals in the solid state. Interestingly, compared to that in solution, (E)‐3‐(pyridin‐4′‐ylmethylene)imidazo[1,2‐a]pyridine 2(3 H)‐one displayed a largely red‐shifted emission (centered at 660 nm, with tailing above 800 nm) in the solid state. A larger bathochromic shift (260 nm) of the emission is an indication of better order and tight stacking in the solid state, which is brought about by the rigid and polar acceptor. These three compounds also reveal different magnetic susceptibilities at 300 K, thus implying that they possess various columnar stacking structures. Most interestingly, these three radicals exhibit unusual ferromagnetic‐to‐antiferromagnetic phase transitions, which can be attributed to anisotropic contraction and non‐uniform slippage of the columnar stacking chains. 相似文献
4.
Christos P. Constantinides Dr. Panayiotis A. Koutentis Prof. Jeremy M. Rawson 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(23):7109-7116
X‐ray studies show that 1,3‐diphenyl‐7‐(thien‐2‐yl)‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl ( 6 ) adopts a distorted, slipped π‐stacked structure of centrosymmetric dimers with alternate short and long interplanar distances (3.48 and 3.52 Å). Cyclic voltammograms of 7‐(thien‐2‐yl)benzotriazin‐4‐yl 6 show two fully reversible waves that correspond to the ?1/0 and 0/+1 processes. EPR and DFT studies on radical 6 indicate that the spin density is mainly delocalized over the triazinyl fragment. Magnetic susceptibility measurements show that radical 6 obeys Curie–Weiss behavior in the 5–300 K region with C=0.378 emu K mol?1 and θ=+4.72 K, which is consistent with ferromagnetic interactions between S=1/2 radicals. Fitting the magnetic susceptibility revealed the behavior is consistent with an alternating ferromagnetic chain (g=2.0071, J1=+7.12 cm?1, J2=+1.28 cm?1). 相似文献
5.
6.
Christos P. Constantinides Dr. Panayiotis A. Koutentis Prof. Jeremy M. Rawson 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(48):15433-15438
7‐(4‐Fluorophenyl) and 7‐phenyl‐substituted 1,3‐diphenyl‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl radicals were characterized by X‐ray diffraction analysis and variable‐temperature magnetic susceptibility studies. The radicals pack in 1D π stacks of equally spaced slipped radicals with interplanar distances of 3.59 and 3.67 Å and longitudinal angles of 40.97 and 43.47°, respectively. Magnetic‐susceptibility studies showed that both radicals exhibit antiferromagnetic interactions. Fitting the magnetic data revealed that the behavior is consistent with 1D regular linear antiferromagnetic chain with J=?12.9 cm?1, zJ′=?0.4 cm?1, g=2.0069 and J=?11.8 cm?1, zJ′=?6.5 cm?1, g=2.0071, respectively. Magnetic‐exchange interactions in benzotriazinyl radicals are sensitive to the degree of slippage, and inter‐radical separation and subtle changes in structure alter the fine balance between ferro‐ and antiferromagnetic interactions. 相似文献
7.
Coordination Complexes of a Neutral 1,2,4‐Benzotriazinyl Radical Ligand: Synthesis,Molecular and Electronic Structures,and Magnetic Properties 下载免费PDF全文
Dr. Ian S. Morgan Akseli Mansikkamäki Georgia A. Zissimou Dr. Panayiotis A. Koutentis Mathieu Rouzières Dr. Rodolphe Clérac Dr. Heikki M. Tuononen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(44):15843-15853
A series of d‐block metal complexes of the recently reported coordinating neutral radical ligand 1‐phenyl‐3‐(pyrid‐2‐yl)‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl ( 1 ) was synthesized. The investigated systems contain the benzotriazinyl radical 1 coordinated to a divalent metal cation, MnII, FeII, CoII, or NiII, with 1,1,1,5,5,5‐hexafluoroacetylacetonato (hfac) as the auxiliary ligand of choice. The synthesized complexes were fully characterized by single‐crystal X‐ray diffraction, magnetic susceptibility measurements, and electronic structure calculations. The complexes [Mn( 1 )(hfac)2] and [Fe( 1 )(hfac)2] displayed antiferromagnetic coupling between the unpaired electrons of the ligand and the metal cation, whereas the interaction was found to be ferromagnetic in the analogous NiII complex [Ni( 1 )(hfac)2]. The magnetic properties of the complex [Co( 1 )(hfac)2] were difficult to interpret owing to significant spin–orbit coupling inherent to octahedral high‐spin CoII metal ion. As a whole, the reported data clearly demonstrated the favorable coordinating properties of the radical 1 , which, together with its stability and structural tunability, make it an excellent new building block for establishing more complex metal–radical architectures with interesting magnetic properties. 相似文献
8.
Dr. Paula Mayorga-Burrezo Vicente G. Jiménez Dr. Davide Blasi Teodor Parella Dr. Imma Ratera Dr. Araceli G. Campaña Prof. Jaume Veciana 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(17):3776-3781
A new persistent organic free radical has been synthetized with Br atoms occupying the ortho- and para-positions of a trityl core. After the isolation of its two propeller-like atropisomers, Plus (P) and minus (M), their absolute configurations were assigned by a combination of theoretical and experimental data. Remarkably, no hints of racemization were observed up to 60 °C for more than two hours, due to the higher steric hindrance imposed by the bulky Br atoms. Therefore, when compared to its chlorinated homologue (t1/2=18 s at 60 °C), an outstanding stability against racemization was achieved. A circularly polarized luminescence (CPL) response of both enantiomers was detected. This free radical shows a satisfactory luminescent dissymmetry factor (|glum(592 nm)|≈0.7×10−3) despite its pure organic nature and low luminescence quantum yield (LQY). Improved organic magnetic CPL emitters derived from the reported structure can be envisaged thanks to the wide possibilities that Br atoms at para-positions offer for further functionalization. 相似文献
9.
10.
Tian Han Dr. Wei Shi Zheng Niu Bo Na Prof. Dr. Peng Cheng 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(3):994-1001
The combination of the anisotropic DyIII ion and organic radicals as spin carriers results in discrete and one‐dimensional lanthanide–radical magnetic materials, namely, [Dy(hfac)3(NITThienPh)2] ( 1 ) and [Dy2(hfac)6(NITThienPh)2]n ( 2 ; hfac=hexafluoroacetylacetonate, NITThienPh=2‐(5‐phenyl‐2‐thienyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide). Linking monomeric 1 with the DyIII ion leads to the formation of polymeric 2 , and the transformation between them is chemically controllable and reversible. The characterization of both static and dynamic magnetic properties shows that the dominant intrachain exchange interaction is important to observe magnetic bistability in 2 rather than that in 1 . Monomeric 1 exhibits paramagnetic behavior, whereas polymeric 2 shows the unusual coexistence of superparamagnetic and two‐step field‐induced metamagnetic behaviors. The antiferromagnetic ground state of 2 does not prevent the dynamic relaxation of the magnetization with the finite‐sized effect in the lanthanide–radical system. Energy barriers to thermally activated relaxation for 2 are 53 and 98 K in the low‐ and high‐temperature regimes, respectively. A hysteresis loop is observed with the coercive field of 99 Oe at 2 K. 相似文献
11.
Martin Vérot Dr. Nicolas Bréfuel Dr. Jacques Pécaut Prof. Cyrille Train Prof. Vincent Robert 《化学:亚洲杂志》2012,7(2):380-386
The oxidation of 1,5‐dimethyl‐3‐(2′‐pyridyl)‐6‐thiooxotetrazane (SvdH3py) by benzoquinone leads to a 1:1 adduct of 1,5‐dimethyl‐3‐(2′‐pyridyl)‐6‐thiooxoverdazyl radical (Svdpy) with hydroquinone (hq). The single‐crystal X‐ray diffraction of this adduct at room temperature (RT) shows that the radicals exhibit a slight curvature that leads to the formation of alternating head‐to‐tail (antiparallel) stacked 1D chains. Moreover, temperature‐dependent X‐ray measurements at 100, 200, and 303 K reveal that the lateral slippages between the radicals of the stacks |δ1| and |δ2| vary from 0.64 to 0.78 Å and 0.54 to 0.40 Å between 100 and 303 K. Despite the alternation of the inter‐radical distances and lateral slippages, the magnetic susceptibility data can be fitted with excellent agreement using a regular one‐dimensional antiferromagnetic chain model with J=?5.9 cm?1. Wavefunction‐based calculations indicate an alternation of the magnetic interaction parameters correlated with the structural analysis at RT. Moreover, they demonstrate that the thermal slippage of the radicals induces a switching of the physical behavior, since the exchange interaction changes from antiferromagnetic (?0.9 cm?1) at 100 K to ferromagnetic (1.4 cm?1) at 303 K. The theoretical approach thus reveals a much richer magnetic behavior than the analysis of the magnetic susceptibility data and ultimately questions the relevance of a spin‐coupled picture based on temperature‐independent parameters. 相似文献
12.
Lu Liu Robert M. Ward Prof. Jennifer M. Schomaker 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(61):13783-13787
The addition of radicals to unsaturated precursors is a powerful tool for the synthesis of both carbo- and heterocyclic organic building blocks. The recent advent of mild ways to generate N-centered radicals has reignited interest in exploiting highly regio-, chemo-, and stereoselective transformations that employ these reactive intermediates. While the additions of aminyl, iminyl, and amidyl radicals to alkenes and alkynes have been well-studied, analogous additions to allenes are scarce. Allenes offer several attractive features, including potential for selective amidation at three distinct sites via judicious choice of precursor or radical source, the opportunity for axial-to-point chirality transfer, and productive trapping of vinyl or allyl radical intermediates to diversify functionality in the products. In this article, we report a regioselective addition of amidyl radicals to allenes to furnish an array of valuable N-heterocycle scaffolds. 相似文献
13.
Dr. Manabu Nakaya Dr. Wataru Kosaka Prof. Dr. Hitoshi Miyasaka Yuki Komatsumaru Dr. Shogo Kawaguchi Dr. Kunihisa Sugimoto Dr. Yingjie Zhang Dr. Masaaki Nakamura Leonard F. Lindoy Prof. Dr. Shinya Hayami 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(26):10745-10752
CO2-responsive spin-state conversion between high-spin (HS) and low-spin (LS) states at room temperature was achieved in a monomeric cobalt(II) complex. A neutral cobalt(II) complex, [CoII(COO-terpy)2]⋅4 H2O ( 1⋅4 H2O ), stably formed cavities generated via π–π stacking motifs and hydrogen bond networks, resulting in the accommodation of four water molecules. Crystalline 1⋅4 H2O transformed to solvent-free 1 without loss of porosity by heating to 420 K. Compound 1 exhibited a selective CO2 adsorption via a gate-open type of the structural modification. Furthermore, the HS/LS transition temperature (T1/2) was able to be tuned by the CO2 pressure over a wide temperature range. Unlike 1 exhibits the HS state at 290 K, the CO2-accomodated form 1⊃CO2 (P =110 kPa) was stabilized in the LS state at 290 K, probably caused by a chemical pressure effect by CO2 accommodation, which provides reversible spin-state conversion by introducing/evacuating CO2 gas into/from 1 . 相似文献
14.
15.
16.
Hiroki Eimura Yoshikazu Umeta Prof. Dr. Hiroko Tokoro Prof. Dr. Masafumi Yoshio Prof. Dr. Shin‐ichi Ohkoshi Prof. Dr. Takashi Kato 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(26):8872-8878
Macroscopically oriented stable organic radicals have been obtained by using a liquid–crystalline (LC) gel composed of an l ‐isoleucine‐based low molecular weight gelator containing a 2,2,6,6‐tetramethylpiperidine 1‐oxyl moiety. The LC gel has allowed magnetic measurements of the oriented organic radical. The gelator has formed fibrous aggregates in liquid crystals via intermolecular hydrogen bonds. The fibrous aggregates of the radical gelator are formed and oriented on cooling by applying a magnetic field to the mixture of liquid crystals and the gelator. Superconducting quantum interference device (SQUID) measurements have revealed that both oriented and nonoriented fibrous aggregates exhibited antiferromagnetic interactions, in which super‐exchange interaction constant J is estimated as ?0.89 cm?1. 相似文献
17.
Benzene Solubility in Ionic Liquids: Working Toward an Understanding of Liquid Clathrate Formation 下载免费PDF全文
Prof. Dr. Jorge F. B. Pereira Luis A. Flores Dr. Hui Wang Prof. Dr. Robin D. Rogers 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(47):15482-15492
The solubility of benzene in 15 imidazolium, pyrrolidinium, pyridinium, and piperidinium ionic liquids has been determined; the resulting, benzene‐saturated ionic liquid solutions, also known as liquid clathrates, were examined with 1H and 19F nuclear magnetic resonance spectroscopy to try and understand the molecular interactions that control liquid clathrate formation. The results suggest that benzene interacts primarily with the cation of the ionic liquid, and that liquid clathrate formation (and benzene solubility) is controlled by the strength of the cation–anion interactions, that is, the stronger the cation–anion interaction, the lower the benzene solubility. Other factors that were determined to be important in the final amount of benzene in any given liquid clathrate phase included attractive interactions between the anion and benzene (when significant), and larger steric or free volume demands of the ions, both of which lead to greater benzene solubility. 相似文献
18.
Strong Direct Magnetic Coupling in a Dinuclear CoII Tetrazine Radical Single‐Molecule Magnet 下载免费PDF全文
Toby J. Woods Dr. Maria Fernanda Ballesteros‐Rivas Sergei M. Ostrovsky Andrew V. Palii Oleg S. Reu Sophia I. Klokishner Dr. Kim R. Dunbar 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(29):10302-10305
The ligand‐centered radical complex [(CoTPMA)2‐μ‐bmtz.?](O3SCF3)3 ? CH3CN (bmtz=3,6‐bis(2′‐pyrimidyl)‐1,2,4,5‐tetrazine, TPMA=tris‐(2‐pyridylmethyl)amine) has been synthesized from the neutral bmtz precursor. Single‐crystal X‐ray diffraction studies have confirmed the presence of the ligand‐centered radical. The CoII complex exhibits slow paramagnetic relaxation in an applied DC field with a barrier to spin reversal of 39 K. This behavior is a result of strong antiferromagnetic metal–radical coupling combined with positive axial and strong rhombic anisotropic contributions from the CoII ions. 相似文献
19.
Summary: The synergy between magnetic field (MF) and electrostatic interactions on the kinetics of radical homopolymerization of acrylamide (AM), acrylic acid (AA), its ionized form acrylate (A−) and diallyldimethylammonium chloride (DADMAC), as well as AM/AA, AM/A−, DADMAC/AA, and DADMAC/AM copolymerizations was investigated. The application of MF during the polymerizations significantly increased the monomer consumption rate (Rp) of all monomers in homo and copolymerizations and the molar masses of polyAA and polyNaA. The molar mass of polyAM and the copolymer composition of any monomer combination remained unchanged by MF. The electrostatic interactions between ionic monomers and growing radicals dominate for the monomers and conditions studied here. 相似文献