首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) represent the link between resonance‐stabilized free radicals and carbonaceous nanoparticles generated in incomplete combustion processes and in circumstellar envelopes of carbon rich asymptotic giant branch (AGB) stars. Although these PAHs resemble building blocks of complex carbonaceous nanostructures, their fundamental formation mechanisms have remained elusive. By exploring these reaction mechanisms of the phenyl radical with biphenyl/naphthalene theoretically and experimentally, we provide compelling evidence on a novel phenyl‐addition/dehydrocyclization (PAC) pathway leading to prototype PAHs: triphenylene and fluoranthene. PAC operates efficiently at high temperatures leading through rapid molecular mass growth processes to complex aromatic structures, which are difficult to synthesize by traditional pathways such as hydrogen‐abstraction/acetylene‐addition. The elucidation of the fundamental reactions leading to PAHs is necessary to facilitate an understanding of the origin and evolution of the molecular universe and of carbon in our galaxy.  相似文献   

2.
A homoditopic molecular host, janusarene, is presented that has two back‐to‐back compactly arranged nanocavities for guest complexation. The unique two‐face structural feature of janusarene allows it to bind and align various guest compounds concurrently, which include spherical pristine fullerene C60 and planar polycyclic aromatic hydrocarbons (PAHs), such as pyrene, perylene, and 9,10‐dimethylanthracene. The host–guest interactions were characterized by single‐crystal X‐ray diffraction. A pairwise encapsulation of the PAH guests by janusarene enables PAH dimers to be obtained that deliver spectroscopic properties distinct from those of PAHs dissolved in solution, or in the bulk state. A monotopic control host was also synthesized and used to characterize the host–guest complexing behavior in solution.  相似文献   

3.
A unified low-temperature reaction mechanism on the formation of acenes, phenacenes, and helicenes—polycyclic aromatic hydrocarbons (PAHs) that are distinct via the linear, zigzag, and ortho-condensed arrangements of fused benzene rings—is revealed. This mechanism is mediated through a barrierless, vinylacetylene mediated gas-phase chemistry utilizing tetracene, [4]phenacene, and [4]helicene as benchmarks contesting established ideas that molecular mass growth processes to PAHs transpire at elevated temperatures. This mechanism opens up an isomer-selective route to aromatic structures involving submerged reaction barriers, resonantly stabilized free-radical intermediates, and systematic ring annulation potentially yielding molecular wires along with racemic mixtures of helicenes in deep space. Connecting helicene templates to the Origins of Life ultimately changes our hypothesis on interstellar carbon chemistry.  相似文献   

4.
The hydrogen‐abstraction/acetylene‐addition (HACA) mechanism has been central for the last decades in attempting to rationalize the formation of polycyclic aromatic hydrocarbons (PAHs) as detected in carbonaceous meteorites such as in Murchison. Nevertheless, the basic reaction mechanisms leading to the formation of even the simplest tricyclic PAHs like anthracene and phenanthrene are still elusive. Here, by exploring the previously unknown chemistry of the ortho ‐biphenylyl radical with acetylene, we deliver compelling evidence on the efficient synthesis of phenanthrene in carbon‐rich circumstellar environments. However, the lack of formation of the anthracene isomer implies that HACA alone cannot be responsible for the formation of PAHs in extreme environments. Considering the overall picture, alternative pathways such as vinylacetylene‐mediated reactions are required to play a crucial role in the synthesis of complex PAHs in circumstellar envelopes of dying carbon‐rich stars.  相似文献   

5.
Three unprecedented helical nanographenes ( 1 , 2 , and 3 ) containing an azulene unit are synthesized. The resultant helical structures are unambiguously confirmed by X-ray crystallographic analysis. The embedded azulene unit in 2 possesses a record-high twisting degree (16.1°) as a result of the contiguous steric repulsion at the helical inner rim. Structural analysis in combination with theoretical calculations reveals that these helical nanographenes manifest a global aromatic structure, while the inner azulene unit exhibits weak antiaromatic character. Furthermore, UV/Vis-spectral measurements reveal that superhelicenes 2 and 3 possess narrow energy gaps ( 2 : 1.88 eV; 3 : 2.03 eV), as corroborated by cyclic voltammetry and supported by density functional theory (DFT) calculations. The stable oxidized and reduced states of 2 and 3 are characterized by in-situ EPR/Vis–NIR spectroelectrochemistry. Our study provides a novel synthetic strategy for helical nanographenes containing azulene units as well as their associated structures and physical properties.  相似文献   

6.
The first rational synthesis of a BN‐doped coronene derivative in which the central benzene ring has been replaced by a borazine core is described. This includes six C−C ring‐closure steps that, through intramolecular Friedel–Crafts‐type reactions, allow the stepwise planarization of the hexaarylborazine precursor. UV/Vis absorption, emission, and electrochemical investigations show that the introduction of the central BN core induces a dramatic widening of the HOMO–LUMO gap and an enhancement of the blue‐shifted emissive properties with respect to its all‐carbon congener.  相似文献   

7.
Halogenated buckybowls or bowl‐shaped polycyclic aromatic hydrocarbons (BS‐PAHs) are key building blocks for the “bottom‐up” synthesis of various carbon‐based nanomaterials with outstanding potential in different fields of technology. The current state of the art provides quite a limited number of synthetic pathways to BS‐PAHs; moreover, none of these approaches show high selectivity and tolerance of functional groups. Herein we demonstrate an effective route to BS‐PAHs that includes directed intramolecular aryl–aryl coupling through C−F bond activation. The coupling conditions were found to be completely tolerant toward aromatic C−Br and C−Cl bonds, thus allowing the facile synthesis of rationally halogenated buckybowls with an unprecedented level of selectivity. This finding opens the way to functionalized BS‐PAH systems that cannot be obtained by alternative methods.  相似文献   

8.
Atmospheric pressure chemical ionization (APCI) in air or in nitrogen with just traces of oxygen is shown to yield regioselective oxidation, dehydrogenation, and fragmentation of alkanes. Ozone is produced from ambient oxygen in situ and is responsible for the observed ion chemistry, which includes partial oxidation to ketones and C−C cleavage to give aldehydes. The mechanism of oxidation is explored and relationships between ionic species produced from individual alkanes are established. Unusually, dehydrogenation occurs by water loss. Competitive incorporation into the hydrocarbon chain of nitrogen versus oxygen as a mode of ionization is also demonstrated.  相似文献   

9.
10.
This study presents a new class of conjugated polycyclic molecules that contain seven‐membered rings, detailing their synthesis, crystal structures and semiconductor properties. These molecules have a nearly flat C6‐C7‐C6‐C7‐C6 polycyclic framework with a p‐quinodimethane core. With field‐effect mobilities of up to 0.76 cm2 V−1 s−1 as measured from solution‐processed thin‐film transistors, these molecules are alternatives to the well‐studied pentacene analogues for applications in organic electronic devices.  相似文献   

11.
12.
A versatile π‐extension reaction was developed based on the three‐component cross‐coupling of aryl halides, 2‐haloarylcarboxylic acids, and norbornadiene. The transformation is driven by the direction and subsequent decarboxylation of the carboxyl group, while norbornadiene serves as an ortho ‐C−H activator and ethylene synthon via a retro‐Diels–Alder reaction. Comprehensive DFT calculations were performed to account for the catalytic intermediates.  相似文献   

13.
14.
15.
Syntheses of large polycyclic aromatic hydrocarbons (PAHs) and graphene nanostructures demand methods that are capable of selectively and efficiently fusing large numbers of aromatic rings, yet such methods remain scarce. Herein, we report a new approach that is based on the quantitative intramolecular reductive cyclization of an oligo(diyne) with a low‐valent zirconocene reagent, which gives a PAH with one or more annulated zirconacyclopentadienes (ZrPAHs). The efficiency of this process is demonstrated by a high‐yielding fivefold intramolecular coupling to form a helical ZrPAH with 16 fused rings (from a precursor with no fused rings). Several other PAH topologies are also reported. Protodemetalation of the ZrPAHs allowed full characterization (including by X‐ray crystallography) of PAHs containing one or more appended dienes with the ortho‐quinodimethane (o‐QDM) structure, which are usually too reactive for isolation and are potentially valuable for the fusion of additional rings by Diels–Alder reactions.  相似文献   

16.
17.
Rapid access to structurally diversified polycyclic aromatic hydrocarbons (PAHs) in a controlled manner is of key significance in materials sciences. Herein, we describe a strategy featuring two distinct electrocatalytic C?H transformations for the synthesis of novel nonplanar PAHs. The combination of rhodaelectrooxidative C?H activation/[2+2+2] alkyne annulation of easily accessible boronic acids with electrocatalytic cyclodehydrogenation provided modular access to diversely substituted PAHs with electricity as a sustainable oxidant. The unique molecular topology as well as the photophysical and electronic properties of the thus obtained PAHs were fully analyzed. The unique power of this metallaelectrocatalysis method was demonstrated by the chemoselective assembly of synthetically useful iodo‐substituted PAHs.  相似文献   

18.
Herein we report an efficient synthesis to prepare O-doped nanographenes derived from the π-extension of pyrene. The derivatives are highly fluorescent and feature low oxidation potentials. Using electrooxidation, crystals of cationic mixed-valence (MV) complexes were grown in which the organic salts organize into face-to-face π-stacks, a favorable solid-state arrangement for organic electronics. Variable-temperature electron paramagnetic resonance (EPR) measurements and relaxation studies suggest a strong electron delocalization along the longitudinal axis of the columnar π-stacking architectures. Electric measurements of single crystals of the MV salts show a semiconducting behavior with a remarkably high conductivity at room temperature. These findings support the notion that π-extension of heteroatom-doped polycyclic aromatic hydrocarbons is an attractive approach to fabricate nanographenes with a broad spectrum of semiconducting properties and high charge mobilities.  相似文献   

19.
Pentaindenocorannulene (C50H20 , 1 ), a deep bowl polynuclear aromatic hydrocarbon, accepts 4 electrons, crystallizes in columnar bowl‐in‐bowl assemblies and forms a nested C60@ 1 2 complex. Spectra, structures and computations are presented.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) that contain both five‐ and seven‐membered rings are rare, and those where these rings are annulated to each other and build azulene units have, to date, mainly been generated in minute amounts on surfaces. Herein, a rational approach to synthesize soluble contorted PAHs containing two embedded azulene units in the bulk is presented. By stepwise detachment of tert‐butyl groups, a series of three azulene embedded PAHs with different degrees of contortion has been made to study the impact of curvature on aromaticity and conjugation. Furthermore, the azulene PAHs showed high fluorescence quantum yields in the NIR regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号