首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Substituent‐ and oxidant‐dependent transformations of allenes are described. Given the profound influence of the substituent on the reactivity of allenes, the subtle differences in allene structures are manifested in the formation of diverse products when reacted with different electrophiles/oxidants. In general, reactions of nonsilylated allenes involve an allylic cation intermediate by forming a C?O bond, at the sp‐hybridized C2, with either DDQ (2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone) or TBHP (tert‐butyl hydroperoxide), along with FeCl2?4 H2O (10 mol %). In contrast, silylated allenes favor the formation of propargylic cation intermediates by transferring the allenic hydride to the oxidant, thus generating 1,3‐enynes (E1 product) or propargylic THBP ethers (SN1 product). The formation of these different putative cationic intermediates from nonsilylated and silylated allenes is strongly supported by DFT calculations.  相似文献   

2.
A two component coupling of an allene and an activated olefin to form 1,3-dienes has been developed. The requisite allenes are synthesized either from terminal alkynes by a one carbon homologation using copper(I) iodide, paraformaldehyde, and diisopropylamine, via an ortho ester-Claisen rearrangement from a propargylic alcohol, or via a Wittig type reaction on a ketene generated in situ from an acid chloride. Mono- through tetrasubstituted allenes could be synthesized by these methods. Either cyclopentadienylruthenium(II) cyclooctadiene chloride or cyclopentadienylruthenium(II) trisacetonitrile hexafluorophosphate catalyze the addition reaction. When the former catalyst is employed, an alkyne activator is added to help generate the active catalyst. Through systematic optimization studies, a range of conditions was examined. The optimal conditions consisted of the use of cerium(III) trichloride heptahydrate as a cocatalyst in dimethylformamide as a solvent at 60 degrees C. The reaction was found to be chemoselective, and a wide range of functionality was tolerated, including esters, alcohols, nitriles, and amides. When substituted allenes are used, good selectivity can be obtained with proper substitution. A mechanism involving a ruthenacycle is proposed to account for the selectivity or lack thereof in product formation. With disubstituted allenes, selectivity is obtained when beta-hydrogen elimination is favored from a specific site. In tri- and tetrasubstituted allenes, steric issues concerning the C-C bond forming event appear to be the dominant factor in determining product formation. This process represents a highly atom-economical synthesis of 1,3-dienes in a controlled fashion. The utility of the 1,3-diene products was demonstrated by their use in Diels-Alder reactions to form a variety of cyclic systems including polycyclic structures. This sequence represents a convergent atom economic method for ring formation by a series of simple additions.  相似文献   

3.
A palladium‐catalyzed cross‐coupling between in situ generated allenyl/propargyl‐lithium species and aryl bromides to yield highly functionalized allenes is reported. The direct and selective formation of allenic products preventing the corresponding isomeric propargylic product is accomplished by the choice of SPhos or XPhos based Pd catalysts. The methodology avoids the prior transmetalation to other transition metals or reverse approaches that required prefunctionalization of substrates with leaving groups, resulting in a fast and efficient approach for the synthesis of tri‐ and tetrasubstituted allenes. Experimental and theoretical studies on the mechanism show catalyst control of selectivity in this allene formation.  相似文献   

4.
We have quantum chemically studied the reactivity, site-, and regioselectivity of the 1,3-dipolar cycloaddition between methyl azide and various allenes, including the archetypal allene propadiene, heteroallenes, and cyclic allenes, by using density functional theory (DFT). The 1,3-dipolar cycloaddition reactivity of linear (hetero)allenes decreases as the number of heteroatoms in the allene increases, and formation of the 1,5-adduct is, in all cases, favored over the 1,4-adduct. Both effects find their origin in the strength of the primary orbital interactions. The cycloaddition reactivity of cyclic allenes was also investigated, and the increased predistortion of allenes, that results upon cyclization, leads to systematically lower activation barriers not due to the expected variations in the strain energy, but instead from the differences in the interaction energy. The geometric predistortion of cyclic allenes enhances the reactivity compared to linear allenes through a unique mechanism that involves a smaller HOMO–LUMO gap, which manifests as more stabilizing orbital interactions.  相似文献   

5.
The first elimination reactions of silyl enol ethers to lithiated allenes are reported. These reactions allow a direct transformation of readily available silyl enol ethers into functionalized allenes. The action of three to four equivalents of lithium diisopropylamide (LDA) on silyl enol ethers results in the formation of lithiated allenes by initial allylic lithiation, subsequent elimination of a lithium silanolate, and finally, lithiation of the allene thus formed. Starting with amide-derived silyl imino ethers, lithiated ketenimines are obtained. A variety of reactions of the lithiated allenes with electrophiles (chlorosilanes, trimethylchlorostannane, dimethyl sulfate and ethanol) were carried out. Elimination of silanolate is observed only for substrates that contain the hindered SiMe2tBu or Si(iPr)3 moiety, but not for the SiMe3 group. The reaction of 1,1-dilithio-3,3-diphenylallene with ketones provides a convenient access to novel 1,1-di(hydroxymethyl)allenes which undergo a domino Nazarov-Friedel-Crafts reaction upon treatment with p-toluenesulfonic acid.  相似文献   

6.
The palladium-catalyzed addition reaction of alkenyl- or aryl-boronic acids into various allenes is described, which allows C-C bond formation in a highly regioselective manner under very mild conditions.  相似文献   

7.
The use of allenes and 1,3-dienes as chiral allylmetal pronucleophiles in intermolecular catalytic enantioselective reductive additions to aldehydes, ketones, imines, carbon dioxide and other C=X electrophiles is exhaustively catalogued together with redox-neutral hydrogen auto-transfer processes. Coverage is limited to processes that result in both C−H and C−C bond formation. The use of alkynes as latent allylmetal pronucleophiles and multicomponent C=X allylations involving allenes and dienes is not covered. As illustrated in this review, the ability of allenes and 1,3-dienes to serve as tractable non-metallic pronucleophiles has evoked many useful transformations that have no counterpart in traditional allylmetal chemistry.  相似文献   

8.
《Tetrahedron》1987,43(3):513-526
The palladium-catalyzed coupling reaction of allenes, vinyl or aryl halides and stabilized carbanions is described : π-allyl palladium complexes are formed by addition of a vinyl or an aryl-palladium complex to an allenic hydrocarbon and trapped by the sodium enolate of diethyl malonate giving rise with good yields to β-butadienyl or β-styryl malonates. With monoalkyi allenes, the reaction is regiospecific with attack of the nucleophile on the unsubstituted carbon of the Intermediate π-allyl complex and in many cases highly stereoselective with the predominant formation of the E configuration for the trisubstituted double bond of the diene. This configuration was demonstrated by 1H NMR using NOE difference spectroscopy.  相似文献   

9.
10.
Two methodologies, one involving Ar-I reactivity and the other through C-H functionalization, for the formation of indolo[2,3-c]pyrane-1-ones via the corresponding allenes, are presented. A highly efficient approach to indolo[2,3-c]pyrane-1-one derivatives through the Pd-catalyzed regioselective annulation of allenes with 3-iodo-1-alkylindole-2-carboxylic acids is described. This method is fairly general for a wide range of allenes affording the respective indolo[2,3-c]pyrane-1-ones in good to excellent yields. In addition, a Pd(II)-catalyzed oxidative coupling of indole-2-caboxylic acid derivatives with allenes via direct C-H functionalization to afford the corresponding indolo[2,3-c]pyrane-1-ones in moderate to good yields has been developed.  相似文献   

11.
This review is focused on the recent advances in the functionalization of allenes via radical process. Different radical partners including carbon radicals and heteroatom radicals are discussed in the reactions of allenes. Generally, the radical formed in situ would attack the allene at the central carbon leading to allyl radical intermediate. However, the formation of alkenyl radical intermediate from allene could be observed as well in some cases with high regioselectivity and stereoselectivity.  相似文献   

12.
This review is focused on the recent advances in the functionalization of allenes via radical process. Different radical partners including carbon radicals and heteroatom radicals are discussed in the reactions of allenes. Generally, the radical formed in situ would attack the allene at the central carbon leading to allyl radical intermediate. However, the formation of alkenyl radical intermediate from allene could be observed as well in some cases with high regioselectivity and stereoselectivity.  相似文献   

13.
Various phenylsulfonyl allene derivatives were prepared with double bonds tethered either to the alpha-position or the gamma-position of the allene. These substrates underwent a highly regio- and stereospecific thermal [2 + 2]-cycloaddition across the nonactivated cumulene double bond, forming distal cycloadducts (i.e., 57) in the case of alpha-tethered allenes and proximal adducts (i.e., 25) in the case of gamma-tethered allenes. The mechanistic rationale for the observed stereospecificity involves initial diradical formation, followed by a rapid ring closure to the more stable cis-fused ring system. The tether may be equipped with heteroatoms, allowing for the formation of fused heterocycles (e.g., 61), and the cycloaddition can be facilitated by the introduction of sterically bulky groups and/or by conformational rigidity to the tether. Other modes of cyclization were observed in the presence of sodium benzenesulfinate or Lewis acids, in which cases polar mechanisms prevail. The chemoselectivity is reversed for [4 + 2]-cycloadditions, which prefer instead to engage the vinyl sulfone moiety, independent of whether the tether is attached to the alpha- or gamma-position of the allene.  相似文献   

14.
Substitution of a H atom by an alkyl group on the terminal carbon of the alkyne moiety of 1,6-fullerenynes has a strong impact on the products of the reaction undergone by this species after thermal treatment. While the reaction of 1,6-fullerenynes bearing an unsubstituted alkyne moiety results in the cycloaddition of the alkyne group to the fullerene double bond leading to cyclobutene-fused derivatives, the presence of an alkyl substituent leads to the formation of allenes. In the present work, we have performed an exhaustive theoretical analysis of all possible reaction mechanisms leading to cyclobutene-fused derivatives and allenes to offer an explanation of the reactivity differences observed. The results obtained show that formation of cyclobutene-fused derivatives occurs through a stepwise diradical reaction mechanism, while allene formation proceeds through a concerted way involving an uncommon intramolecular ene process. For the 1,6-fullerenynes bearing a substituted alkyne, the ene reaction path leading to allenes has an energy barrier somewhat lower than the stepwise diradical mechanism for the cyclobutene-fused derivative formation, thus explaining the outcome of the reaction.  相似文献   

15.
Chiral allenes are readily accessed in a single pot operation in the reaction of terminal alkynes, aldehydes, chiral secondary amines, and zinc halides in good yields (up to 77% yield) and excellent enantioselectivities (up to 99% ee) in toluene at 120 °C. The reaction proceeds through initial formation of chiral propargylamine intermediates with creation of a new stereogenic center and subsequent chirality transfer via an intramolecular hydride shift to produce chiral allenes with high enantiomeric purities.  相似文献   

16.
An efficient Rh(III)-catalyzed stepwise ortho allylation of N-methoxybenzamides 1 with polysubstituted allenes is reported. This C-H functionalization involving allenes is conducted under very mild conditions (-20 °C or room temperature) and compatible with ambient air and moisture, and it can be applied to terminal or internal allenes with different synthetically attractive functional groups. Highly efficient axial chirality transfer has been realized, yielding optically active lactones.  相似文献   

17.
A one-pot synthesis of allenes by the 2-nitrobenzenesulfonylhydrazide-mediated coupling of hydroxyaldehydes or ketones with alkynyl trifluoroborate salts is reported. This mild process involves in situ formation of a sulfonylhydrazone that reacts with alkynyl trifluoroborates to generate a transient propargylic hydrazide species. Decomposition of this unstable hydrazide via an intermediate monoalkyldiazine produces the allene products through an alkene walk mechanism.  相似文献   

18.
Mukai C  Takahashi Y 《Organic letters》2005,7(26):5793-5796
[reaction: see text] The Stille coupling of N-acyl-2-iodoanilines with the 1-(tributylstannyl)-1-substituted allenes affected the successive one-step formation of the 2-methyl-3-substituted indoles. Alternatively, the other type of 2-alkyl-3-substituted indoles could be synthesized in a one-pot operation, which consists of the Stille coupling reaction with the 1-(tributylstannyl)-1,3-disubstituted allenes, followed by TBAF treatment. This procedure could be applied to the synthesis of indomethacin.  相似文献   

19.
Studies about the regiocontrolled addition of arylboronic acids to allenes using a palladium or a platinum catalyst have been described. The selectivity of the reaction can be altered by the choice of the metal reagent and base. Contrary to the formation of endo-olefinic products in the reactions using hydroxopalladium complex, predominant production of exo-olefinic products was observed by the reaction with hydroxoplatinum complex.  相似文献   

20.
Abstract: A number of acetylenes RCH2C=CH have been obtained by metallation of the allenes RCH=C=CH2 or mixtures of acetylenes and allenes with n-BuLi in THF-hexane and hydrolysis after allowing the metallated allenes to rearrange at room temperature or by heating under reflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号