首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The search for more biocompatible alternatives to Gd3+‐based MRI agents, and the interest in 52Mn for PET imaging call for ligands that form inert Mn2+ chelates. Given the labile nature of Mn2+, high inertness is challenging to achieve. The strongly preorganized structure of the 2,4‐pyridyl‐disubstituted bispidol ligand L1 endows its Mn2+ complex with exceptional kinetic inertness. Indeed, MnL1 did not show any dissociation for 140 days in the presence of 50 equiv. of Zn2+ (37 °C, pH 6), while recently reported potential MRI agents MnPyC3A and MnPC2A‐EA have dissociation half‐lives of 0.285 h and 54.4 h under similar conditions. In addition, the relaxivity of MnL1 (4.28 mm ?1 s?1 at 25 °C, 20 MHz) is remarkable for a monohydrated, small Mn2+ chelate. In vivo MRI experiments in mice and determination of the tissue Mn content evidence rapid renal clearance of MnL1. Additionally, L1 could be radiolabeled with 52Mn and the complex revealed good stability in biological media.  相似文献   

2.
3.
Stable Mn2+ mono‐ and binuclear complexes containing pentadentate 6,6′‐((methylazanediyl)bis(methylene))dipicolinic acid coordinating units give remarkably high relaxivities due to the presence of two inner‐sphere water molecules. The mononuclear derivative binds human serum albumin (HSA) with an association constant of 3372 M ?1, which results in the replacement of the coordinated water molecules by donor atoms of protein residues. The dinuclear analogue also binds HSA while leaving one of the Mn2+ centres exposed to the solvent with two coordinated water molecules. Thus, this complex shows remarkably high relaxivities upon protein binding (39.0 mM ?1 s?1 per Mn, at 20 MHz and 37 °C).  相似文献   

4.
用离子交换法制备了Mn2+交换的NaY分子筛MnNaY, 用红外光谱(IR)和X射线粉末衍射(XRD)等方法进行了表征. 研究了Mn2+含量为3.2%的样品在酸性水溶液中的稳定性和离子交换选择性. 弛豫时间测量和体内磁共振成像实验表明其弛豫效率变化范围为4.9~9.7 mmol•L•s-1, 高于目前临床所用造影剂Gd-DTPA, 对胃部MRI信号具有良好的增强效果. 它是比较好的潜在口服胃肠道造影剂.  相似文献   

5.
6.
A new pyclen-3,9-diacetate derivative ligand (H23,9-OPC2A) was synthesized possessing an etheric O-atom opposite to the pyridine ring, to improve the dissociation kinetics of its Mn(II) complex (pyclen = 3,6,9,15-tetraazabicyclo(9.3.1)pentadeca-1(15),11,13-triene). The new ligand is less basic than the N-containing analogue (H23,9-PC2A) due to the non-protonable O-atom. In spite of its lower basicity, the conditional stability of the [Mn(3,9-OPC2A)] (pMn = −log(Mn(II)), cL = cMn(II) = 0.01 mM. pH = 7.4) remains unaffected (pMn = 8.69), compared to the [Mn(3,9-PC2A)] (pMn = 8.64). The [Mn(3,9-OPC2A)] possesses one water molecule, having a lower exchange rate with bulk solvents (kex298 = 5.3 ± 0.4 × 107 s−1) than [Mn(3,9-PC2A)] (kex298 = 1.26 × 108 s−1). These mild differences are rationalized by density-functional theory (DFT) calculations. The acid assisted dissociation of [Mn(3,9-OPC2A)] is considerably slower (k1 = 2.81 ± 0.07 M−1 s−1) than that of the complexes of diacetates or bisamides of various 12-membered macrocycles and the parent H23,9-PC2A. The [Mn(3,9-OPC2A)] is inert in rat/human serum as confirmed by 52Mn labeling (nM range), as well as by relaxometry (mM range). However, a 600-fold excess of EDTA (pH = 7.4) or a mixture of essential metal ions, propagated some transchelation/transmetalation in 7 days. The H23,9-OPC2A is labeled efficiently with 52Mn at elevated temperatures, yet at 37 °C the parent H23,9-PC2A performs slightly better. Ultimately, the H23,9-OPC2A shows advantageous features for further ligand designs for bifunctional chelators.  相似文献   

7.
Contrast agents for magnetic resonance imaging have historically been based on paramagnetic metal complexes, particularly Gd3+ chelates, which tend to lose their contrast enhancement ability with increasing magnetic field strength. Emerging high-field MRI applications require the development of novel contrast agents that exhibit high relaxation enhancement as a function of magnetic field strength. Paramagnetic ions such as Dy3+, Tb3+ or Ho3+ incorporated into supramolecular or inorganic nano-architectures represent promising platforms for the development of high field MRI contrast agents. Furthermore, such platforms allow facile inclusion of multiple imaging modalities, therapeutic loading, and targeting vectors. This Minireview examines the application of contrast agents for high-field MRI, which range from single molecules to nanoparticles. Approaches to create multimodal agents by combining high-field MRI contrast properties with another imaging modality are also discussed.  相似文献   

8.
Iron oxide nanoparticles as contrast agents are reported to effectively improve magnetic resonance imaging of tissues and cells. In this work, cleaved iron oxide nanoparticles (CIONPs) were generated from hydrophobic FeO nanoparticles (HIONPs) by coating their surfaces with PEG‐phospholipids, oxidizing them under water, and slowly removing the residual FeO phase in phthalate buffer. The synthesized CIONPs showed good r2 values of up to 258 s?1 mM ?1. Thus, the CIONPs can be employed as vectors for drug delivery due to their unique structure with an empty inner space, which enables their use in a wide range of applications.  相似文献   

9.
10.
11.
We report two macrocyclic ligands based on a 1,7-diaza-12-crown-4 platform functionalized with acetate (tO2DO2A2−) or piperidineacetamide (tO2DO2AMPip) pendant arms and a detailed characterization of the corresponding Mn(II) complexes. The X−ray structure of [Mn(tO2DO2A)(H2O)]·2H2O shows that the metal ion is coordinated by six donor atoms of the macrocyclic ligand and one water molecule, to result in seven-coordination. The Cu(II) analogue presents a distorted octahedral coordination environment. The protonation constants of the ligands and the stability constants of the complexes formed with Mn(II) and other biologically relevant metal ions (Mg(II), Ca(II), Cu(II) and Zn(II)) were determined using potentiometric titrations (I = 0.15 M NaCl, T = 25 °C). The conditional stabilities of Mn(II) complexes at pH 7.4 are comparable to those reported for the cyclen-based tDO2A2− ligand. The dissociation of the Mn(II) chelates were investigated by evaluating the rate constants of metal exchange reactions with Cu(II) under acidic conditions (I = 0.15 M NaCl, T = 25 °C). Dissociation of the [Mn(tO2DO2A)(H2O)] complex occurs through both proton− and metal−assisted pathways, while the [Mn(tO2DO2AMPip)(H2O)] analogue dissociates through spontaneous and proton-assisted mechanisms. The Mn(II) complex of tO2DO2A2− is remarkably inert with respect to its dissociation, while the amide analogue is significantly more labile. The presence of a water molecule coordinated to Mn(II) imparts relatively high relaxivities to the complexes. The parameters determining this key property were investigated using 17O NMR (Nuclear Magnetic Resonance) transverse relaxation rates and 1H nuclear magnetic relaxation dispersion (NMRD) profiles.  相似文献   

12.
Complexes of 4,10‐bis(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid (trans‐H6do2a2p, H6 L ) with transition metal and lanthanide(III) ions were investigated. The stability constant values of the divalent and trivalent metal‐ion complexes are between the corresponding values of H4dota and H8dotp complexes, as a consequence of the ligand basicity. The solid‐state structures of the ligand and of nine lanthanide(III) complexes were determined by X‐ray diffraction. All the complexes are present as twisted‐square‐antiprismatic isomers and their structures can be divided into two series. The first one involves nona‐coordinated complexes of the large lanthanide(III) ions (Ce, Nd, Sm) with a coordinated water molecule. In the series of Sm, Eu, Tb, Dy, Er, Yb, the complexes are octa‐coordinated only by the ligand donor atoms and their coordination cages are more irregular. The formation kinetics and the acid‐assisted dissociation of several LnIII–H6 L complexes were investigated at different temperatures and compared with analogous data for complexes of other dota‐like ligands. The [Ce( L )(H2O)]3? complex is the most kinetically inert among complexes of the investigated lanthanide(III) ions (Ce, Eu, Gd, Yb). Among mixed phosphonate–acetate dota analogues, kinetic inertness of the cerium(III) complexes is increased with a higher number of phosphonate arms in the ligand, whereas the opposite is true for europium(III) complexes. According to the 1H NMR spectroscopic pseudo‐contact shifts for the Ce–Eu and Tb–Yb series, the solution structures of the complexes reflect the structures of the [Ce(H L )(H2O)]2? and [Yb(H L )]2? anions, respectively, found in the solid state. However, these solution NMR spectroscopic studies showed that there is no unambiguous relation between 31P/1H lanthanide‐induced shift (LIS) values and coordination of water in the complexes; the values rather express a relative position of the central ions between the N4 and O4 planes.  相似文献   

13.
14.
15.
Manganese is involved as a cofactor in the activation of numerous enzymes as well as the oxygen‐evolving complex of photosystem II. Full understanding of the role played by the Mn2+ ion requires detailed knowledge of the interaction modes and energies of manganese with its various environments, a knowledge that is far from complete. To bring detailed insight into the local interactions of Mn in metallopeptides and proteins, theoretical studies employing first‐principles quantum mechanical calculations are carried out on [Mn‐amino acid]2+ complexes involving all 20 natural α‐amino acids (AAs). Detailed investigation of [Mn‐serine]2+, [Mn‐cysteine]2+, [Mn‐phenylalanine]2+, [Mn‐tyrosine]2+, and [Mn‐tryptophan]2+ indicates that with an electron‐rich side chain, the most stable species involves interaction of Mn2+ with carbonyl oxygen, amino nitrogen, and an electron‐rich section of the side chain of the AA in its canonical form. This is in sharp contrast with aliphatic side chains for which a salt bridge is formed. For aromatic AAs, complexation to manganese leads to partial oxidation as well as aromaticity reduction. Despite multisite binding, AAs do not generate strong enough ligand fields to switch the metal to a low‐ or even intermediate‐spin ground state. The affinities of Mn2+ for all AAs are reported at the B3LYP and CCSD(T) levels of theory, thereby providing the first complete series of affinities for a divalent metal ion. The trends are compared with those of other cations for which affinities of all AAs have been previously obtained.  相似文献   

16.
The title dodecanuclear Mn complex, namely dodeca‐μ2‐acetato‐κ24O:O′‐tetraaquatetra‐μ2‐nitrato‐κ8O:O′‐tetra‐μ4‐oxido‐octa‐μ3‐oxido‐tetramanganese(IV)octamanganese(III) nitromethane tetrasolvate, [Mn12(CH3COO)12(NO3)4O12(H2O)4]·4CH3NO2, was synthesized by the reaction of Mn2+ and Ce4+ sources in nitromethane with an excess of acetic acid. This compound is distinct from the previously known single‐molecule magnet [Mn12O12(O2CMe)16(H2O)4], synthesized by Lis [Acta Cryst. (1980), B 36 , 2042–2044]. It is the first Mn12‐type molecule containing nitrate ligands to be directly synthesized without the use of a preformed cluster. Additionally, this molecule is distinct from all other known Mn12 complexes due to intermolecular hydrogen bonds between the nitrate and water ligands, which give rise to a three‐dimensional network. The complex is compared to other known Mn12 molecules in terms of its structural parameters and symmetry.  相似文献   

17.
18.
A mononuclear Mn(I) pincer complex [Mn(Ph2PCH2SiMe2)2NH(CO)2Br] was disclosed to catalyze the pinacolborane (HBpin)-based CO2 hydroboration reaction. Density functional calculations were conducted to reveal the reaction mechanism. The calculations showed that the reaction mechanism could be divided into four stages: (1) the addition of HBpin to the unsaturated catalyst C1 ; (2) the reduction of CO2 to HCOOBpin; (3) the reduction of HCOOBpin to HCHO; (4) the reduction of HCHO to CH3OBpin. The activation of HBpin is the ligand-assisted addition of HBpin to the unsaturated Mn(I)-N complex C1 generated by the elimination of HBr from the Mn(I) pincer catalyst. The sequential substrate reductions share a common mechanism, and every hydroboration commences with the nucleophilic attack of the Mn(I)-H to the electron-deficient carbon centers. The hydride transfer from Mn(I) to HCOOBpin was found to be the rate-limiting step for the whole catalytic reaction, with a total barrier of 27.0 kcal/mol, which fits well with the experimental observations at 90 °C. The reactivity trend of CO2, HCOOBpin, HCHO, and CH3OBpin was analyzed through both thermodynamic and kinetic analysis, in the following order, namely HCHO>CO2>HCOOBpin≫CH3OBpin. Importantly, the very high barrier for the reduction of CH3OBpin to form CH4 reconciles with the fact that methane was not observed in this catalytic reaction.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号