首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coordination compounds of Cu (II), Y (III), Zr (IV) and La (III) with the tetradentate Schiff base (H2L) obtained through the condensation of p‐phenylenediamine with salicylaldehyde under reflux conditions. The complexes were characterized by elemental analysis, magnetic susceptibility, molar conductance and also, with various spectroscopic techniques such as 1H NMR, UV–Vis., IR and XRD techniques. Electrolytic nature of complexes was ascertained by molar conductance values. In these four complexes, the ligand chelates act in a tetradentate manner via azomethine nitrogen and oxygen atoms of phenolic groups. Electronic spectroscopic data are in agreement with an octahedral geometrical structure. Thermal degradation analyses in nitrogen gas were used to investigate the number and location of water molecules. The chemical formulae of metal complexes were confirmed by microanalytical data. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* were calculated from the DTG curves using Coats Redfern (CR) and Horowitz–Metzeger (HM) methods at n = 1 or n ≠ 1. Nematicidal activities indicate that the ligand exhibit greater activity when compared to its complexes. In addition metal complexes displayed good moderate nematicidal activities.  相似文献   

2.
A series of Co(II), Cu(II), Y(III), Zr(IV), La(III), and U(VI) complexes derived from 2-(2-hydroxybenzylidinemine)-benzoic acid (L) ligand were synthesized. The mode of bonding of L and the structure of its metal complexes were investigated using different analytical and spectral tools (FT-IR, UV–Vis, 1H NMR, mass, and XRD). The ligand chelated with the metal ions as a neutral bidentate through oxygen and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry with characteristic color for metal ions. The results of magnetic moment measurements supported paramagnetic for some complexes (Co(II) and Cu(II)) and diamagnetic phenomena for the other complexes. The thermal decomposition of the ligand along with its metal complexes was explained. The molar conductance values of all complexes in (DMF) were found in the range 154.50 to 250.20 S cm2 mol−1 at room temperature. The activation thermodynamic parameters, such as E*, ΔH*, ΔS* and ΔG*, were calculated from the DTG curves using Coats–Redfern (CR) and Horowitz–Metzeger (HM) methods at n = 1 or n ≠ 1. The nematicidal activity of the synthesized L and their metal complexes was screened.  相似文献   

3.
《中国化学会会志》2017,64(12):1478-1495
In this work, mixed ligand complexes derived from ethyl 2‐(2‐hydroxybenzylidine)‐hydrazine carboxylate (HL) and 1,10‐phenanthroline (Phen) as ligands were synthesized and their structures elucidated by elemental analysis, infrared (IR), electronic,1H NMR, and mass spectra, X‐ray diffraction (XRD), magnetic susceptibility measurements, and TG/DTG analyses. The analytical and spectral data support the formation of the complexes with the central ion in each complex six‐coordinated and a slightly distorted octahedral geometry. The IR spectra showed that HL and Phen ligands act as neutral bidentates. The XRD patterns of the complexes showed their crystalline nature. The calculated bond length and the force constant F (U═O) in the uranyl complex are 1.738 Å and 685.90 Nm−1, respectively. The molar conductance values of the synthetic complexes in DMF were found to be in the range 5.00–274.06 S cm2/mol at room temperature. The thermodynamic parameters were evaluated by using the Coats–Redfern (CR) and Horowitz–Metzeger (HM) methods. Theoretical molecular structures were investigated by the density functional theory/B3LYP method using the Gaussian 98 W basis set. The nematicidal activity of the ligands and its metal complexes was also studied.  相似文献   

4.
A new series of Fe (III), Co (II), Zn (II), Y (III), Zr (IV) and La (III) complexes derived from the novel ligand 4-(4-Isopropyl phenyl)-2-oxo-6-phenyl 1,2-dihyropyridine-3-carbonitrile (L) were synthesized and characterized. The mode of bonding of L and geometrical structures of their metal complexes were elucidated by different micro analytical and spectral methods (FT-IR,UV–visible,1H NMR and Mass spectra) as well as thermal analysis (TG and DTG), and differential scanning calorimetry (DSC). The results of analytical and spectroscopic equipments revealed that L acts as bidentate through nitrogen of carbonitrile group and oxygen of keto group. The conductivity measurement results deduced that these chelates are electrolyte with 1:2 for Co (II), Zn (II), and Zr (IV) and 1:3 for Fe (III), Y (III), and La (III). The results of magnetic moment measurements supported paramagnetic for some complexes (Fe (III), Co (II) and Cu (II)) and diamagnetic phenomena for the other complexes (Y (III), Zr (IV) and La (III)). Thermodynamic parameters such as energy of activation E*, entropy ΔS*, enthalpy ΔH* and Gibss free energy ΔG* were calculated using Coats-Redfern and Horowitz-Metzeger methods at n = 1 or n#1. Some results of bioactivity tests for ligands and their metal complexes were recorded against Gram-positive, Gram-negative bacteria and antifungal. The complexes showed significant more than free ligand.  相似文献   

5.
A new Azo‐Schiff base ligand L was prepared by reaction of m‐hydroxy benzoic acid with (Schiff base B) of 3‐[2‐(1H–indol‐3‐yl)‐ethylimino]‐1.5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylamine. This synthesized ligand was used for complexation with different metal ions like Ni(II), Co(II), Pd(II) and Pt(IV) by using a molar ratio of ligand: metal as 1:1. Resulted compounds were characterized by NMR (1H and 13C), UV–vis spectroscopy, TGA, FT‐IR, MS, elemental analysis, magnetic moment and molar conductivity studies. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and K are calculated from the TGA curves using Coats ‐ Redfern method. Hyper Chem‐8 program has been used to predict structural geometries of compounds in gas phase. The biological activities of Schiff base and its complexes had been tested in vitro against, two Gram positive bacteria (Bacillus subtillis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruguinosa).  相似文献   

6.
Synthesis, spectroscopic characterization, theoretical and antimicrobial studies of Ca(II), Fe(III), Pd(II), and Au(III) complexes of amoxicillin (amox) antibiotic drug are presented in the current paper. Structure of 1: 1 (metal: amox) complexes were elucidated on the basis of elemental analyses, and IR, Raman, 1H NMR, and electronic spectral data. According to molar conductance measurements the complexes had electrolyte nature. Amoxicillin reacted with metal ions as a tridentate ligand coordinated with metal ions via–NH2,–NH, and β-lactam carbonyl groups. The complexes were formulated as [Ca(amox-Na)(H2O)]·Cl2·4H2O (1), [Fe(amox-Na)(H2O)3]·Cl3·3H2O (2), [Pd(amox-Na)(H2O)]·Cl2 (3), and [Au(amox-Na)(H2O)]·Cl3 (4). Kinetic thermodynamic parameters (E*, ΔS*, ΔH*, and ΔG*) were calculated based on the Coats–Redfern and Horowitz–Metzger methods using thermo gravimetric curves of TG and DTG. Nanosize particles of amoxicillin complexes have been studied by XRD, SEM, and TEM methods. Theoretical studies of the synthesized complexes have been performed.  相似文献   

7.
Mn(II), Co(II), and Cu(II) complexes with novel heterocyclic ligands derived from anthranilic acid and its 5-bromo derivative with ethyl-2-thionylpyruvate were synthesized and characterized by means of elemental analysis, molar conductivity, spectral methods (IR, 1H NMR, and UV-Vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. The IR spectra of the two ligands and their complexes were used to identify the type of bonding. The kinetic thermodynamic parameters such as: E*, ΔH*, ΔS*, and ΔG* were estimated from the DTG curves. New ligands and their complexes have been tested for their possible antibacterial and antifungal activity.  相似文献   

8.
The mixed‐ligand Mn(II), Fe(III), Ni(II), Cu(II), Zn(II) and Zr(IV) complexes of meloxicam (H2mel) and 2,2′‐bipyridine (Bipy) were prepared and characterized. For all complexes, the analytical and spectroscopic results revealed that H2mel acts in a monobasic bidentate manner through the oxygen of the amide and nitrogen of the thiazole groups, whereas Bipy coordinates through the two nitrogen atoms with slightly distorted octahedral geometry. Thermodynamic parameters (E, ΔS*, ΔH* and ΔG*) were calculated using Coats–Redfern and Horowitz–Metzger methods. The geometries of H2mel and the complexes were carefully studied using density functional theory to predict the properties of materials performed using the hybrid density functional method B3LYP. All studied complexes are soft with respect to H2mel where η varies from 0.096 for Zn(II) complex to 0.067 for Fe(III) complex and σ varies from 10.42 to 14.93 eV, while η and σ for H2mel are 0.14 and 7.14 eV, respectively. The antibacterial activities of the ligands and metal complexes were investigated and the data show that the complexes are active against some bacterial species compared with H2mel.  相似文献   

9.
New metal complexes derived from the reaction of N-[(phenylamino)thioxomethyl] hydrazino carbonyl methyl pyridinium chloride (H2L; PTHMPC) with some metal salts of the general formula MX2 [(X = Cl? and/or CH3COO?; M = Cd(II), UO2(II), Mn(II) and Zr(IV)] were synthesized and characterized by elemental analyses, spectral analyses (IR, UV-vis., 1H NMR), thermal analyses (TGA, DTG), and conductance and magnetic measurements. The results showed that the ligand exists in metal complexes either in the keto form or in the enol form. Moreover, the IR spectral data suggest that the acetate ion behaves in a monodentate manner. Semi-empirical calculations ZINDO/1, PM3, and AM1 have been used to study the molecular geometry and the harmonic vibrational spectra of the ligand and its metal complexes with the purpose of assisting the experimental assignment of the complexes. Generally, there is an agreement between the observed and the calculated spectra. Finally, the thermodynamic parameters (ΔE*, ΔH, ΔG, and ΔS) have been calculated from the data of thermal analyses (TGA and DTG).

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

10.
A new series of metal complexes of Pd(II), Cd(II) and Cu(II, I) of polydentate Schiff base ligand (H2L), namely ((Z)-2-(phenylamino)-N'-(thiophen-2-ylmethylene) acetohydrazide) have been prepared. The ligand and its metal complexes have been characterized based on various physicochemical studies as elemental analyses, molar conductance, spectral (UV–Vis, MS, IR, 1H NMR, 13C NMR and XRD), magnetic moment measurements and thermal studies (TG, DTG). In the view of previous studies, the ligand (H2L) acts as polydentate one and coordinates with metal ions to form all metal complexes. The kinetic and thermodynamic parameters of decomposition process (ΔG, ΔH, ΔS) were calculated. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program. The calculations are performed to obtain the optimized molecular geometry. The antibacterial study of the selected compounds was assayed against two pathogenic bacteria. Moreover, the complexes (Cu II, I), Cd(II), Pd(II)) and the ligand revealed excellent antioxidant properties and could be useful in fighting the free radicals which occur in close connection with cancerous cells. It was remarkable that the two complexes (Cu II, I) demonstrated stronger antioxidant effects than their parent compounds. It is clear that the new complexes are good active compounds for use in a variety of applications.  相似文献   

11.
The thermal properties of the Co(II), Ni(II) and Cu(II) complexes of iminodiacetic acid (H2IDA) and of glycine were determined using TG, DTG and DSC techniques. The thermal properties of the two series were compared and discussed in terms of IR spectra, ΔH, ΔG and ΔS for the formation of the complexes in aqueous solutions, as well as the thermal data.  相似文献   

12.
Co(II), Ni(II) and Cu(II) chloro complexes of benzilic hydrazide (BH) have been synthesized. Also, reaction of the ligand (BH) with several copper(II) salts, including NO3 ?, AcO?, and SO4 ? afforded metal complexes of the general formula [CuLX(H2O) n nH2O, where X is the anion and n = 0, 1 or 2. The newly synthesized complexes were characterized by elemental analysis, mass spectra, molar conductance, UV–vis, IR spectra, magnetic moment, and thermal analysis (TG/DTG). The physico-chemical studies support that the ligand acts as monobasic bidentate towards metal ion through the carbonyl and hydroxyl oxygen atoms. The spectral data revealed that the geometrical structure of the complexes is square planar for Cu (II) complexes and tetrahedral for Co(II) and Ni(II) complexes. Structural parameters of the ligand and its complexes have been calculated. The ligand and its metal complexes are screened for their antimicrobial activity. The catalytic activities of the metal chelates have been studied towards the oxidative decolorization of AB25, IC and AB92 dyes using H2O2. The catalytic activity is strongly dependent on the type of the metal ion and the anion of Cu(II) complexes.  相似文献   

13.
The synthesis and characterization of Mn (II), Fe (II), Co (II), Ni (II), Cu (II) and Zn (II) complexes with 3-(bromoacetyl)coumarin (BAC) in presence of 1,10-phenanthroline (Phen) were reported and described by elemental analysis, molar conductivity, FT-IR, UV–Vis and effective magnetic moments. TG and DTG have been applied to study the decomposition mechanisms for BAC, Phen and their complexes. The analytical results and spectral studies showed that BAC and Phen act as bidentate ligands via oxygen of α, β-unsaturated ketone and oxygen of lactone carbonyl of coumarin and two pyridyl nitrogen atoms of Phen. Octahedral geometries have been proposed for all complexes and the kinetic parameter (E*, ΔH*, ΔS* and ΔG*) were calculated using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. DFT calculations (bond lengths, bond angles, total energy, heat of formation, dipole moment and the lowest energy model structures) have been determined. The antibacterial activities for synthesized complexes were assayed against some selected bacterial and the complexes displayed a very highly significant against L. monocytogens.  相似文献   

14.
The complexes of alloxan with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) Cd(II), Hg(II), Ti(IV) and Zr(II) have been isolated and characterized on the basis of elemental analysis, molar conductivity, spectral studies (mid infrared, 1H-NMR and UV/vis spectra), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The thermal decomposition of the metal complexes was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The kinetic thermodynamic parameters, E*, ΔH*, ΔS* and ΔG*, were calculated using Coats and Redfern and Horowitz and Metzger equations. The ligand and its complexes have been studied for possible biological activity including antibacterial and antifungal activity.  相似文献   

15.
The synthesis and characterization of two new acetato-bridged dinuclear copper(II) complexes are described. Both compounds have the general formula [Cu(L)(µ-O2C–CH3)]2, in which L = 4-bromo-2-((4-methylpyridin-2-ylimino)methyl)phenol or 4-bromo-2-((6-methylpyridin-2-ylimino)methyl)phenol. The title compounds consist of dinuclear units with bridging acetato groups and a ligand linked to each copper via the phenol oxygen and nitrogen. Both compounds were synthesized in a one-step reaction and characterized by elemental analysis, Fourier transform infrared (FTIR), electron spin resonance (ESR), and electronic spectra and by room temperature magnetic moments. The compounds exhibit antiferromagnetic interactions at room temperature. UV-Vis spectra show four absorptions attributed to d–d transitions of copper, ligand → metal charge transfer and π π* or n π* transitions of ligand. The FTIR spectra indicate a Cu2O4C2 ring vibration. Both complexes show room temperature magnetic moments of about 1.6 B.M. per copper. The X-band ESR studies indicate a weak half-field band, characteristic of the Cu(II)–Cu(II) dimer, observed at 1552 and 1558 G for the complexes, strongly suggesting that the hyperfine structure arises from a spin triplet species. The spectra of frozen samples in DMSO or DMF at liquid nitrogen temperature show a typical Δm = 1 transition.  相似文献   

16.
A Schiff base (L) is prepared by condensation of cuminaldehyde and L-histidine, and characterized by elemental analysis, IR, UV-Vis, 1H-NMR, 13C-NMR, and mass spectra. Co(II), Ni(II), Cu(II), and Zn(II) complexes of this Schiff-base ligand are synthesized and characterized by elemental analysis, molar conductance, mass, IR, electronic spectra, magnetic moment, electron spin resonance (ESR), CV, TG/DTA, powder XRD, and SEM. The conductance data indicate that all the complexes are 1 : 1 electrolytes. IR data reveal that the Schiff base is a tridentate monobasic donor, coordinating through azomethine nitrogen, imidazole nitrogen, and carboxylato oxygen. The electronic spectral data and magnetic measurements suggest that Co(II) and Ni(II) complexes are tetrahedral, while Cu(II) complex has distorted square planar geometry. XRD and SEM show that Co(II), Cu(II), and Zn(II) complexes have crystalline nature, while the Ni(II) complex is amorphous and the particles are in nanocrystalline phase. The in vitro biological activities of the synthesized compounds were tested against the bacterial species, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Staphylococcus aureus; and fungal species, Aspergillus niger, Aspergillus flavus, and Candida albicans by the disc diffusion method. The biological study indicates that complexes exhibit more activity than the ligand. The nuclease activity of the ligand and its complexes are assayed on CT DNA using gel electrophoresis in the presence and the absence of H2O2. The Cu(II) complex shows increased nuclease activity in the presence of an oxidant when compared to the ligand, Co(II) and Ni(II) complexes.  相似文献   

17.
The reaction of α‐keto‐stabilized diphosphine ylides [Ph2P(CH2)nPPh2═C(H)C(O)C6H4p‐CN] (n = 1 (Y1); n = 2 (Y2)) with dibromo(1,5‐cyclooctadiene) palladium(II)/platinum(II) complexes, [Pd/PtBr2(cod)], in equimolar ratio gave the new cyclometalated Pd(II) and Pt(II) complexes [Br2Pd(κ2‐Y1)] ( 1 ), [Br2Pt(κ2‐Y1)] ( 2 ), [Br2Pd(κ2‐Y2)] ( 3 ) and [Br2Pt(κ2‐Y2)] ( 4 ). These compounds were screened in a search for novel antibacterial agents and characterized successfully using Fourier transfer infrared and NMR (1H, 13C and 31P) spectroscopic methods. Also, the structures of complexes 1 and 2 were characterized using X‐ray crystallography. The results showed that the P,C‐chelated complexes 1 and 2 have structures consisting of five‐membered rings, while 3 and 4 have six‐membered rings, formed by coordination of the ligand through the phosphine group and the ylidic carbon atom to the metal centre. Also, a theoretical study of the structures of complexes 1 – 4 was conducted at the BP86/def2‐SVP level of theory. The nature of metal–ligand bonds in the complexes was investigated using energy decomposition analyses (EDA) and extended transition state combined with natural orbitals for chemical valence analyses. The results of EDA confirmed that the main portions of ΔEint, about 57–58%, in the complexes are allocated to ΔEelstat.  相似文献   

18.
A new series of metal complexes [M(L)2] (where M = Sn(II), Pb(II), and HL = semicarbazone, thiosemicarbazone or phenylthiosemicarbazone) have been prepared and characterized by elemental analysis, conductance measurements, molecular weight determinations, UV–visible, infrared, and nuclear magnetic resonance (1H-, 13C-, and 119Sn-NMR) spectral studies. Elemental analysis of the metal complexes suggested 1 : 2 (metal–ligand) stoichiometry. Infrared spectra of the complexes agree with coordination to the metal through the nitrogen of the azomethine (>C=N?) and the oxygen/sulfur of the ketonic/thiolic group. Electronic spectra suggest a distorted tetrahedral geometry for all Schiff base complexes. The bond lengths, bond angles, highest occupied molecular orbital, lowest unoccupied molecular orbital, Mulliken atomic charges, and the lowest energy model structure of the complexes have been determined with DFT calculations. Representative Schiff base and its metal chelates have been screened for their in vitro antibacterial activity against four bacteria, Gram-positive (Bacillus cereus, Staphylococcus aureus) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) and four strains of fungus (Penicillium chrysogenum, Aspergillus niger, Rhizopus nigricans, and Alternaria alternata). The metal chelates possess higher antimicrobial activity than the free ligands.  相似文献   

19.
New ONS hydrazone ligand, 2-[(2-aminochromon-3-yl)methylidene]-N-phenylhydrazinecarbothioamide, HL , was synthesized and reacted with different salts of Cu (II) ion (OAc, NO3, SO42− and Cl) in absence and presence of secondary ligands (L′); 8-hydroxyquinoline, 1,10-phenanthroline or SCN; to form binary and ternary Cu(II)-chelates. The ligand and its Cu(II)-complexes were fully characterized by analytical, spectral, thermal, conductivity and magnetic susceptibility measurements. The metal chelates showed octahedral, square planar and /or distorted tetraherdal arrangements. Coats–Redfern equations used to calculate the kinetic parameters of the thermal decomposition stages (Ea, A, ΔH, ΔS and ΔG). The compounds exhibit luminescence property; promising interesting potential applications as photoactive materials. Lippert–Mataga, Bakhshiev, Kawski–Chamma–Viallet and microscopic solvent polarity parameter and ETN correlation methods were applied on the solvatochromic shifts of emission spectra to evaluate the ground (μg) and excited (μe) states dipole moments. Excited state dipole moment is larger than the ground state which may be attributed to π-π* transition. The coordinating anions play an important role on the position and intensity of emission band. The ligand and its metal complexes showed antimicrobial activity towards Gram–positive bacteria, Gram–negative bacteria, yeast and fungus. The molecular structural parameters of HL and its Cu(II)- complexes have been calculated on the basis of DFT engaged in the Gaussian 09 program at the B3LYP/6-31G(d,p) level; the theoretical data are correlated with the experimental data.  相似文献   

20.
A new tridentate benzimidazole ligand (L‐C11) containing undecyl chains and its Mn (II) and Zn (II) complexes were synthesised and characterized by spectroscopic and analytical methods. Molecular structures of complexes [Mn(L‐C11)Cl2] and [Zn(L‐C11)Cl2] were evaluated by X‐ray diffraction studies. The X‐ray data showed metal ions in both complexes are five‐coordinate with distorted square pyramidal geometry around the metal centres. The undecyl chains in the structure of the complexes are aligned in an interdigitated manner (head to tail) forming a non‐polar domain. The aggregation properties of the ligand and its complexes were investigated by UV–Vis. absorption and emission spectroscopies in DMF‐water mixtures. The emission spectral data revealed that the compounds showed aggregation induced quenching (AIQ) in DMF‐water solutions. Moreover, thermal properties of the compounds were investigated by TG, DTG and DSC analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号