首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of propargylic amines and CO2 can provide high‐value‐added chemical products. However, most of catalysts in such reactions employ noble metals to obtain high yield, and it is important to seek eco‐friendly noble‐metal‐free MOFs catalysts. Here, a giant and lantern‐like [Zn116] nanocage in zinc‐tetrazole 3D framework [Zn22(Trz)8(OH)12(H2O)9?8 H2O]n Trz=(C4N12O)4? ( 1 ) was obtained and structurally characterized. It consists of six [Zn14O21] clusters and eight [Zn4O4] clusters. To our knowledge, this is the highest‐nuclearity nanocages constructed by Zn‐clusters as building blocks to date. Importantly, catalytic investigations reveal that 1 can efficiently catalyze the cycloaddition of propargylic amines with CO2, exclusively affording various 2‐oxazolidinones under mild conditions. It is the first eco‐friendly noble‐metal‐free MOFs catalyst for the cyclization of propargylic amines with CO2. DFT calculations uncover that ZnII ions can efficiently activate both C≡C bonds of propargylic amines and CO2 by coordination interaction. NMR and FTIR spectroscopy further prove that Zn‐clusters play an important role in activating C≡C bonds of propargylic amines. Furthermore, the electronic properties of related reactants, intermediates and products can help to understand the basic reaction mechanism and crucial role of catalyst 1 .  相似文献   

2.
An effective method was developed for the synthesis of three cluster‐based frameworks with multifarious secondary building units (SBUs) and various structures, which were formulated as [Me2NH2]2[Zn10(BTC)63‐O)(μ4‐O)(H2O)5] · 3DMA · 9H2O ( FJI ‐ 3 ), [Me2NH2]2[Zn93‐OH)2(BTC)6(H2O)3] · 5DMA · 6H2O ( FJI ‐ 4 ) and [Me2NH2][Zn33‐OH)(BTC)2DMF] · H2O ( FJI ‐ 5 ) (H3BTC = 1,3,5‐benzenetricarboxylic acid, DMA = N,N′‐dimethyl acetamide and DMF = N,N′‐dimethyl formamide), respectively. X‐ray structural analysis reveals that FJI ‐ 3 displays 3D highly porous metal‐organic framework with four kinds of microporous cages constructed by two paddle‐wheel Zn2(CO2)4, trimeric Zn3O(CO2)6, and tetrameric Zn4O(CO2)6 SBUs. FJI ‐ 4 exhibits 3D microporous MOFs with a dodecahedral cavities built by paddle‐wheel Zn2(CO2)4 and trimeric Zn3O(CO2)6. FJI ‐ 5 shows 3D microporous MOFs with an 1D channel assembled by the Zn3O(CO2)6 SBUs. In addition, the fluorescence and sorption properties in these cluster‐based frameworks were also investigated. Furthermore, the method employed in this work may provide an useful approach to the design and synthesis of novel cluster‐based frameworks.  相似文献   

3.
A series of ruthenium alkenylacetylide complexes trans-[Ru{C≡CC(=CH2)R}Cl(dppe)2] (R=Ph ( 1 a ), cC4H3S ( 1 b ), 4-MeS-C6H4 ( 1 c ), 3,3-dimethyl-2,3-dihydrobenzo[b]thiophene (DMBT) ( 1 d )) or trans-[Ru{C≡C-cC6H9}Cl(dppe)2] ( 1 e ) were allowed to react with the corresponding propargylic alcohol HC≡CC(Me)R(OH) (R=Ph ( A ), cC4H3S ( B ), 4-MeS-C6H4 ( C ), DMBT ( D ) or HC≡C-cC6H10(OH) ( E ) in the presence of TlBF4 and DBU to presumably give alkenylacetylide/allenylidene intermediates trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dppe)2]PF6 ([ 2 ]PF6). These complexes were not isolated but deprotonated to give the isolable bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dppe)2] (R=Ph ( 3 a ), cC4H3S ( 3 b ), 4-MeS-C6H4 ( 3 c ), DMBT ( 3 d )) and trans-[Ru{C≡C-cC6H9}2(dppe)2] ( 3 e ). Analogous reactions of trans-[Ru(CH3)2(dmpe)2], featuring the more electron-donating 1,2-bis(dimethylphosphino)ethane (dmpe) ancillary ligands, with the propargylic alcohols A or C and NH4PF6 in methanol allowed isolation of the intermediate mixed alkenylacetylide/allenylidene complexes trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dmpe)2]PF6 (R=Ph ([ 4 a ]PF6), 4-MeS-C6H4 ([ 4 c ]PF6). Deprotonation of [ 4 a ]PF6 or [ 4 c ]PF6 gave the symmetric bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dmpe)2] (R=Ph ( 5 a ), 4-MeS-C6H4 ( 5 c )), the first of their kind containing the dmpe ancillary ligand sphere. Attempts to isolate bis(allenylidene) complexes [Ru{C=C=C(Me)R}2(PP)2]2+ (PP=dppe, dmpe) from treatment of the bis(alkenylacetylide) species 3 or 5 with HBF4 ⋅ Et2O were ultimately unsuccessful.  相似文献   

4.
A new family of resorcin[4]arene‐based metal–organic frameworks (MOFs), namely, [Eu(HL)(DMF)(H2O)2] ? 3 H2O ( 1 ), [Tb(HL)(DMF)(H2O)2] 3 H2O ( 2 ), [Cd4(L)2(DMF)4(H2O)2] 3 H2O ( 3 ) and [Zn3(HL)2(H2O)2] 2 DMF ? 7 H2O ( 4 ), have been constructed from a new resorcin[4]arene‐functionalized tetracarboxylic acid (H4L=2,8,14,20‐tetra‐ethyl‐6,12,18,24‐tetra‐methoxy‐4,10,16,22‐tetra‐carboxy‐methoxy‐calix[4]arene). Isostructural 1 and 2 exhibit charming 1D motifs built with the cup‐like HL3? anions and rare earth cations. Compounds 3 and 4 show a unique sandwich‐based 2D layer and a fascinating 3D framework, respectively. Remarkably, compounds 1 and 2 display intensive red and green emissions triggered by the efficient antenna effect of organic ligands under UV light. More importantly, systematic luminescence studies demonstrate that Ln‐MOFs 1 and 2 , as efficient multifunctional fluorescent materials, show highly selective and sensitive sensing of Fe3+, polyoxometalates (POMs), and acetone, which represents a rare example of a sensor for quantitatively detecting three different types of analytes. This is also an exceedingly rare example of Fe3+ and POMs detection in aqueous solutions employing resorcin[4]arene‐based luminescent Ln‐MOFs. Furthermore, the possible mechanism of the sensing properties is deduced.  相似文献   

5.
在保持原有"层-柱"MOF[Zn4(bpta)2(dipytz)2(H2O)2]·4DMF·H2O (1)(H4bpta=2,2'',6,6''-联苯四羧酸,dipytz=3,6-二(4-吡啶基)-1,2,4,5-四嗪)主体结构不变的情况下,通过dipytz配体中四嗪环的原位水解反应将极性的二芳酰基联氨基团引入框架,成功构筑出配合物[Zn4(bpta)2(dipytzhydr2(H2O)2]·solvent (2)(dipytzhydr=1,2-二异烟酰基肼)。对配合物2的系统表征和气体吸附性质研究结果证实了功能化目标的实现:配合物2相比于配合物1展现出更高的二氧化碳吸附热(由28.8 kJ·mol-1升高至30.3 kJ·mol-1)和CO2/CH4吸附选择性。以上结果表明基于配体中四嗪基团的原位水解后修饰能够有效提高相关MOFs材料的CO2吸附性能。  相似文献   

6.
Here, we report two novel water‐stable amine‐functionalized MOFs, namely IISERP‐MOF26 ([NH2(CH3)2][Cu2O(Ad)(BDC)]?(H2O)2(DMA), 1 ) and IISERP‐MOF27 ([NH2(CH3)2]1/2[Zn4O(Ad)3(BDC)2]?(H2O)2(DMF)1/2, 2 ), which show selective CO2 capture capabilities. They are made by combining inexpensive and readily available terephthalic acid and N‐rich adenine with Cu and Zn, respectively. They possess 1D channels decorated by the free amine group from the adenine and the polarizing oxygen atoms from the terephthalate units. Even more, there are dimethyl ammonium (DMA+) cations in the pore rendering an electrostatic environment within the channels. The activated Cu‐ and Zn‐MOFs physisorb about 2.7 and 2.2 mmol g?1 of CO2, respectively, with high CO2/N2 and moderate CO2/CH4 selectivity. The calculated heat of adsorption (HOA=21–23 kJ mol?1) for the CO2 in both MOFs suggest optimal physical interactions which corroborate well with their facile on‐off cycling of CO2. Notably, both MOFs retain their crystallinity and porosity even after soaking in water for 24 hours as well as upon exposure to steam over 24 hours. The exceptional thermal and chemical stability, favorable CO2 uptakes and selectivity and low HOA make these MOFs promising sorbents for selective CO2 capture applications. However, the MOF′s low heat of adsorption despite having a highly CO2‐loving groups lined walls is quite intriguing.  相似文献   

7.
Two luminescent metal‐organic frameworks (LMOFs), namely, [Cd2(DDCPB) · (DMF)2 · H2O]n (CHD‐ 1 ) and [Zn2(DDCPB) · (DMA)2]n · n(DMA) (CHD‐ 2 ), were solvothermally constructed, which present structural diversity. Single crystal X‐ray diffraction analysis indicates that they consist of [Cd2(μ2‐O)2(κ‐O)2] building units (for CHD‐ 1 ), [Zn2(κ‐O)6] building units (for CHD‐ 2 ), which are further linked by multicarboxylate H4DDCPB to construct microporous frameworks. Remarkably, both CHD‐ 1 and 2 exhibit highly efficient luminescent sensing for environmentally relevant Cu2+ ions through luminescence quenching. Theoretical and experimental calculations indicate that the luminescent quenching can be attributes to the donor‐acceptor electron transfer between the MOFs and analytes. This work indicates that CHD‐ 1 and 2 could be taken as a potential candidate for developing multifunctional luminescence sensors.  相似文献   

8.
Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal–organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.  相似文献   

9.
To investigate the coordination chemistry of modbc (2-methyl-6-oxygen-1,6-dihydro-3,4'-bipyridine-5-carbonitrile) with ZnII and CdII salts under the solvothermal conditions, six new MOFs with the formulas [Zn(modbc)2(mpa)]n ( 1 ), [Zn(modbc)(mpa)(H2O)]n ( 2 ), [Zn(modbc)(pa)0.5(H2O)]n ( 3 ), [Cd(modbc)(pa)0.5(H2O)]n ( 4 ), [Zn(modbc)2(tpa)]n ( 5 ), and [Cd(modbc)2(pda)(H2O)]n ( 6 ) (mpa = m-phthalic acid; pa = pyromellitic acid; tpa = terephthalic acid; pda = pentane diacid) were successfully synthesized by solvothermal reaction and fully characterized by elemental analysis, IR spectroscopy, single crystal, powder X-ray diffraction, thermal and photoluminescence properties. Though MOFs 3 and 4 have the same structure, we have obtained three different kinds of coordination configurations by the X-ray diffration analysis. Compared with 1 and 2 , coordination water has no effect on the solid fluorescence emission of MOFs. It is worth noting that the fluorescence intensity of 3 containing central ZnII atoms is very strong, whereas that of isomorphism 4 containing central CdII atoms has almost no fluorescence emission, showing that metal ions have very important influence on the fluorescence emission. Further, we found that solvents had an important effect on the fluorescence emission in liquid fluorescence of MOFs 1 – 6 .  相似文献   

10.
Two mixed‐metal‐center inorganic‐organic hybrid frameworks incorporating N‐(Phosphonomethyl)iminodiacetate(H4pmida), [Zn2V2O2(pmida)2(H2O)10]·H2O ( 1 ) and [Zn2V2O2(pmida)2(H2O)12]·2H2O ( 2 ), were synthesized by hydrothermal reactions and characterized by elemental analysis, IR spectra, UV‐Vis spectra and single crystal X‐ray analysis. In complex 1 , the centrosymmetric dimeric [V2O2(pmida)2]4– unit connected to neighboring Zn2+ through the phosphonate group, while 2 the [V2O2(pmida)2]4– unit uncoordinated with the Zn2+ in the presence of NaOH. Magnetic measurements in the range 2‐300 K have shown weak antiferromagnetic interaction between the adjacent vanadium ions in complexes.  相似文献   

11.
The mixed oxochalcogenate compounds Mg2(SO4)(TeO3)(H2O), Mg3(SO4)(TeO3)(OH)2(H2O)2, Zn2(SeO4)(TeO3), and Zn4(SO4)(TeO3)3 were obtained under hydrothermal conditions (210 °C, autogenous pressure). Structure analyses using single‐crystal X‐ray data revealed tellurium in all four compounds to be present in oxidation state +IV, whereas sulfur or selenium atoms exhibit an oxidation state of +VI. In the crystal structures of the two magnesium compounds, [MgO5(H2O)] octahedra [Mg2(SO4)(TeO3)(H2O) structure, isotypic with the Co and Mn analogues] or [MgO4(OH)2] and [MgO4(OH)2(H2O)2] octahedra [Mg3(SO4)(TeO3)(OH)2(H2O)2 structure, novel structure type] as well as trigonal‐pyramidal TeO32– anions make up metal oxotellurate sheets, which are bridged by SO42– anions. The polar crystal structure of Zn2(SeO4)(TeO3) is isotypic with Zn2(MoO4)(TeO3) and consists of [ZnO4] tetrahedra, [ZnO6] octahedra, SeO42– and TeO32– anions as principal building units that are connected into a framework structure. Such a structural arrangement, with basically the same coordination polyhedra as in Zn2(SeO4)(TeO3) but with SO42– instead of SeO42– anions, is also found in the tellurium‐rich compound Zn4(SO4)(TeO3)3 that crystallizes in a novel structure type.  相似文献   

12.
Three 3-D metal-organic frameworks (MOFs), [Cd(NDC)(biim-4)]·0.5H2O (1), [Cd2(TDC)2(biim-4)2(H2O)2] (2) and [Zn2(biim-4)2(TDC)2]·2.5H2O (3) (biim-4 = 1,4-bis(1-imidazolyl) butyric alkyl; H2NDC = 1,4-naphthalene dicarboxylic acid; H2TDC = thiophene-2,5-dicarboxylic acid), have been synthesized under hydrothermal conditions and structurally characterized by single X-ray diffraction. The three MOFs have high photocatalytic degradation effects on methyl orange under UV irradiation. Through electronic structure analysis combined with time-dependent density functional theory calculations, catalytic performances of these materials are correlated with the molecular composition and the optoelectronic properties of the samples.  相似文献   

13.
New bi- and trihomonuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with sulfa-guanidine Schiff bases have been synthesized for potential chemotherapeutic use. The complexes are characterized using elemental and thermal (TGA) analyses, mass spectra (MS), molar conductance, IR, 1H-NMR, UV-Vis, and electron spin resonance (ESR) spectra as well as magnetic moment measurements. The low molar conductance values denote non-electrolytes. The thermal behavior of these chelates shows that the hydrated complexes lose water of hydration in the first step followed by loss of coordinated water followed immediately by decomposition of the anions and ligands in subsequent steps. IR and 1H-NMR data reveal that ligands are coordinated to the metal ions by two or three bidentate centers via the enol form of the carbonyl C=O group, enolic sulfonamide S(O)OH, and the nitrogen of azomethine. The UV-Vis and ESR spectra as well as magnetic moment data reveal that formation of octahedral [Mn2L1(AcO)2(H2O)6] (1), [Co2(L1)2(H2O)8] (2), [Ni2L1(AcO)2(H2O)6] (3), [Mn3L2(AcO)3(H2O)9] (5), [Co3L2(AcO)3(H2O)9] · 4H2O (6), [Ni3L2(AcO)3(H2O)9] · 7H2O (7), [Mn3L3(AcO)3(H2O)6] (9), [Co2(HL3)2(H2O)8] · 4H2O (10), [Ni3L3(AcO)3(H2O)9] (11), [Mn3L4(AcO)3(H2O)9] · H2O (13), [Co2(HL4)2(H2O)8] · 5H2O (14), and [Ni3L4(AcO)3(H2O)9] (15) while [Zn2L1(AcO)2(H2O)2] (4), [Zn3L2(AcO)3(H2O)3] · 2H2O (8), [Zn3L3(AcO)3(H2O)3] · 3H2O (12), and [Zn3L4(AcO)3(H2O)3] · 2H2O (16) are tetrahedral. The electron spray ionization (ESI) MS of the complexes showed isotope ion peaks of [M]+ and fragments supporting the formulation.  相似文献   

14.
Reactions of fresh M(OH)2 (M = Zn2+, Cd2+) precipitate and (RS)-2-methylglutaric acid (H2MGL), 2,2′-bipyridine (bipy), or 1,10-phenanthroline (phen) in aqueous solution at 50°C afforded four new metal–organic complexes [Zn2(bipy)2(H2O)2(MGL)2] (1), [Zn2(phen)2(H2O)(MGL)2] (2), [Cd(bipy)(H2O)(MGL)] · 3H2O (3), and [Cd(phen)(H2O)(MGL)] · 2H2O (4), which were characterized by single crystal X-ray diffraction, IR spectra, TG/DTA analysis as well as fluorescence spectra. In 1, the [Zn(bipy)(H2O)]2+ moieties are linked by R- and S-2-methylglutarate anions to build up the centrosymmetric dinuclear [Zn2(bipy)2(H2O)2(MGL)2] molecules. In 2, the 1-D ribbon-like chains [Zn2(phen)2(H2O)(MGL)2] n can be visualized as from centrosymmetric dinuclear [Zn2(phen)2(H2O)2(MGL)2] units sharing common aqua ligands. Both 3 and 4 exhibit 1-D chains resulting from [Cd(bipy)(H2O)]2+ and [Cd(phen)(H2O)]2+, respectively, bridged alternately by R- and S-2-methylglutarate anions in bis-chelating fashion. The intermolecular and interchain π···π stacking interactions form supramolecular assemblies in 1 and 1-D chains in 24 into 2-D layers. The hydrogen bonded lattice H2O molecules are sandwiched between 2-D layers in 3 and 4. Fluorescence spectra of 14 exhibit LLCT π → π* transitions.  相似文献   

15.
The self-assembly of the two zinc(II) metal–organic frameworks, [Zn2(L)(bdc)2]·3MeOH·4H2O}n ( 1 , L = 2-(pyridin-4-yl)-3H-imidazo[4,5-c]pyridine, H2bdc = 1,4-benzenedicarboxylic acid) and [Zn2(L)(bdc)2]·2DMF·H2O}n ( 2 ), was achieved under mild reaction conditions. Both compounds 1 and 2 were structurally characterized by single-crystal X-ray diffraction analysis. Interestingly, the coordination modes of the ligand L in two structures are entirely different. Compounds 1 and 2 were made up of paddle wheel-shaped {Zn2(O2C)4} secondary building unit (SBU) clusters, which adopted three-dimensional structures with a pcu topology. Rich weak interactions were observed in the structures of both 1 and 2 . The uncoordinated imidazole and pyridine moieties exhibited electron donor–acceptor interactions, π–π stacking, hydrogen bonding, and CH–π interactions. These interactions also facilitated the abilities of the framework to adsorb CO2 molecules. Gas adsorption studies revealed that compound 1 selectively adsorbed CO2 (131.1 cm3/g) over N2 (23.5 cm3/g) and H2 (36.5 cm3/g) at a pressure of 1 atm.  相似文献   

16.
Oligonuclear Benzylthiolate Zinc Complexes From solutions of zinc nitrate and sodium benzylthiolate crystallize, depending on the reaction conditions, tetraalkylammonium salts of the zinc complexes [Zn2(SBz)6]2—, [Zn4(SBz)10]2—, and [Zn8(S)(SBz)16]2—. In each complex the zinc ions are tetrahedrally coordinated by sulfur atoms. [Zn4(SBz)10]2— has an adamantane framework. The bridging thiolate sulfur atoms in [Zn8(S)(SBz)16]2—, unlike those in icosahedral reference compounds, form a cuboctahedral framework.  相似文献   

17.
Fragmentation of 13 compounds of the 4H-pyran-4-one and pyridin-4-one series under electron impact involves formation of rearrangement ions stabilized by multiple bonds and oxygen atoms (mostly [RC≡O]+ and RCH=OR′]+), as well of neutral molecules with low enthalpies of formation (CO, H2O, CH2O, CO2, CH2=C=O, C3O2, and RCOOH; R = H, Me, HC≡C, HOC≡C).  相似文献   

18.
On the Oxidative Addition of 1-Halogenalk-1-ynes – Synthesis and Structure of Phenylalkynylpalladium Complexes [Pd(PPh3)4] ( 2 ) reacts with IC≡CPh and ClC≡CPh in the sense of an oxidative addition to give trans-[Pd(C≡CPh)X(PPh3)2] (X = I: 3 a , X = Cl: 3 b ). As side products trans-[PdX2(PPh3)2] (X = I: 4 a , X = Cl: 4 b ; < 10%) and PhC≡C–C≡CPh ( 5 ; X = I: ca 30%, X = Cl: < 4%) are formed. 3 a and 3 b were characterized by NMR (1H, 13C, 31P) and IR spectroscopies as well as by X-ray single-crystal structure analyses. In the crystals of 3 a and 3 b isolated molecules were found. The Pd–C≡C–Ph unit is linear in 3 a and approximately linear in 3 b [Pd–C≡C 174.2(6)°, C≡C–C 179,0(7)°].  相似文献   

19.
A combined solid and solution phase methodology for the synthesis of a series of mononuclear and polynuclear zinc benzoate complexes is described. The substituent on the aromatic ring and the effect of solvent on deciding the composition of the complexes is presented. From the 4-substituted benzoic acids 4-methylbenzoic acid (ptolH), 4-nitrobenzoic acid (pnitrobenH) and 4-chlorobenzoic acid (pchlorbenH), the mononuclear complexes [Zn(ptol)2(H2O)2], [Zn(pnitroben)2(H2O)(DMSO)2] and [Zn(pchlorben)2py)2] (where DMSO = dimethylsulfoxide, py = pyridine) have been synthesized and structurally characterised. Zinc complexes from the reaction of zinc sulfate heptahydrate with 3-methylbenzoic acid (mtolH) and 2-methylbenzoic acid (otolH), the dinuclear complexes [Zn22-mtol)4(py)2], [Zn22-otol)4(py)2], pentanuclear complex [Zn52-mtol)6(mtol)23-OH)2 (py)2] and tetranuclear complex [Zn42-otol)64-O) (DMSO)2], have been prepared by varying the reaction conditions and the complexes have been structurally characterized.  相似文献   

20.
Eight new complexes with the formula [PhC_2C(OH)R~2R~2]Co_2(CO)_6 were prepared fromphenyl substituted propargylic alcohols and dicobalt octacarbonyl.The reactions of these propargylioalcohol complexes with active methylene compounds,2,4-pentanedione or ethyl acetoacetate,in thepresnce of an acid,HBF_4(40%)+P_2O_5(in excess)or BF_3·Et_2O,at room temperature in dichlorome-thane were investigated.From the 1-alkyl substituted tertiary propargylic alcohol complexes,threenew conjugated ene-yne complexes produced by intramolecular dehydration reaction were isolated inhigh yields(82—95%).On the other hand,four new alkylated complexes were obtained withsatisfactory yields(44—66%)from the secondary propargylic alcohol complexes.The influence ofother acids,phosphorus pentoxide and polyphosphoric acid,on both dehydration reaction andalkylated reaction was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号