首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A palladium-catalyzed intermolecular dynamic kinetic asymmetric dearomatization of 3-arylindoles with internal alkynes was developed with the use of achiral Xantphos and chiral sulfinamide phosphine ligand ( PC-Phos ) as the co-ligands. This method could deliver various spiro[indene-1,3′-indole] compounds in good yields (up to 95 % yield) with up to 98 % ee. The salient features of the transformation include the use of readily available substrates, ease of scale-up and the versatile functionalization of the products. The mechanistic experiments gave some insights on active intermediates.  相似文献   

2.
The development of heterogeneous asymmetric catalysts has attracted increasing interest in synthetic chemistry but mostly relies on the immobilization of homogeneous chiral catalysts. Herein, a series of chiral metal–organic frameworks (MOFs) have been fabricated by anchoring similar chiral hydroxylated molecules (catalytically inactive) with different lengths onto Zr-oxo clusters in achiral PCN-222(Cu). The resulting chiral MOFs exhibit regulated enantioselectivity up to 83 % ee in the asymmetric ring-opening of cyclohexene oxide. The chiral molecules furnished onto the catalytic Lewis sites in the MOF create multilevel microenvironment, including the hydrogen interaction between the substrate and the chiral −OH group, the steric hindrance endowed by the benzene ring on the chiral molecules, and the proximity between the catalytic sites and chiral molecules confined in the MOF pores, which play crucial roles and synergistically promote chiral catalysis. This work nicely achieves heterogeneous enantioselective catalysis by chiral microenvironment modulation around Lewis acid sites.  相似文献   

3.
This article details the enantioselective catalytic performance of crosslinked, polymer immobilized, Ir‐based, chiral complexes for transfer hydrogenation of cyclic imines to chiral amines. Polymerization of the achiral vinyl monomer, divinylbenzene, and a polymerizable chiral 1,2‐diamine monosulfonamide ligand followed by complexation with [IrCl2Cp*]2 affords the crosslinked polymeric chiral complex, which can be successfully applied to asymmetric transfer hydrogenation of cyclic imines. Polymeric catalysts prepared from amphiphilic achiral monomers have high catalytic activity in the reaction and can be used both in organic solvents and water to give chiral cyclic amines with a high level of enantioselectivity (up to 98% ee). The asymmetric reaction allows for reuse of the heterogeneous catalyst without any loss in activity or enantioselectivity over several runs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3037–3044  相似文献   

4.
The synthesis of olefin metathesis catalysts containing chiral, monodentate N-heterocyclic carbenes and their application to asymmetric ring-closing metathesis (ARCM) are reported. These catalysts retain the high levels of reactivity found in the related achiral variants (1a and 1b). Using the parent chiral catalysts 2a and 2b and derivatives that contain steric bulk in the meta positions of the N-bound aryl rings (catalysts 3-5), five- through seven-membered rings were formed in up to 92% ee. The addition of sodium iodide to catalysts 2a-4a (to form 2b-4b in situ) caused a dramatic increase in enantioselectivity for many substrates. Catalyst 5a, which gave high enantiomeric excesses for certain substrates without the addition of NaI, could be used in loadings of < or =1 mol %. Mechanistic explanations for the large sodium iodide effect as well as possible mechanistic pathways leading to the observed products are discussed.  相似文献   

5.
A cinchona alkaloid‐functionalized heterogeneous catalyst is prepared through a thiol‐ene click reaction of chiral N‐(3,5‐ditrifluoromethylbenzyl)quininium bromide and a mesostructured silica, which is obtained by co‐condensation of 1,2‐bis(triethoxysilyl)ethane and 3‐(triethoxysilyl)propane‐1‐thiol. Structural analyses and characterizations disclose its well‐defined chiral single‐site active center, and electron microscopy images reveal its monodisperse property. As a heterogenous catalyst, it enables an efficient asymmetric epoxidation of achiral β‐trifluoromethyl‐β,β‐disubstituted enones, the obtained chiral products can then be converted easily into enriched chiral β‐trifluoromethyl‐β‐hydroxy ketones through a sequential epoxidation‐relay reduction process. Furthermore, such a heterogeneous catalyst can be recovered conveniently and reused in asymmetric epoxidation of 4,4,4‐trifluoro‐1,3‐diphenylbut‐2‐enone, showing an attractive feature in a practical construction of enriched chiral β‐CF3‐substituted molecules.  相似文献   

6.
The concept of frustrated Lewis pairs (FLPs) has been widely applied in various research areas, and metal‐free hydrogenation undoubtedly belongs to the most significant and successful ones. In the past decade, great efforts have been devoted to the synthesis of chiral boron Lewis acids. In a sharp contrast, chiral Lewis base derived FLPs have rarely been disclosed for the asymmetric hydrogenation. In this work, a novel type of chiral FLP was developed by simple combination of chiral oxazoline Lewis bases with achiral boron Lewis acids, thus providing a promising new direction for the development of chiral FLPs in the future. These chiral FLPs proved to be highly effective for the asymmetric hydrogenation of ketones, enones, and chromones, giving the corresponding products in high yields with up to 95 % ee. Mechanistic studies suggest that the hydrogen transfer to simple ketones likely proceeds in a concerted manner.  相似文献   

7.
Optical chirality sensing has attracted a lot of interest due to its potential in high-throughput screening in chirality analysis. A molecular sensor is required to convert the chirality of analytes into optical signals. Although many molecular sensors have been reported, sensors with wide substrate scope remain to be developed. Herein, we report that the amide naphthotube-based chirality sensors have an unprecedented wide scope for chiroptical sensing of organic molecules. The substrates include, but are not limited to common organic products in asymmetric catalysis, chiral molecules with inert groups or remote functional groups from their chiral centers, natural products and their derivatives, and chiral drugs. The effective chirality sensing is based on biomimetic recognition in water and on effective chirality transfer through guest-induced formation of a chiral conformation of the sensors. Furthermore, the sensors can be used in real-time monitoring on reaction kinetics in water and in determining absolute configurations and ee values of the products in asymmetric catalysis.  相似文献   

8.
Two new, homochiral, porous metal–organic coordination polymers [Zn2(ndc){(R)‐man}(dmf)]?3DMF and [Zn2(bpdc){(R)‐man}(dmf)]?2DMF (ndc=2,6‐naphthalenedicarboxylate; bpdc=4,4′‐biphenyldicarboxylate; man=mandelate; dmf=N,N′‐dimethylformamide) have been synthesized by heating ZnII nitrate, H2ndc or H2bpdc and chiral (R)‐mandelic acid (H2man) in DMF. The colorless crystals were obtained and their structures were established by single‐crystal X‐ray diffraction. These isoreticular structures share the same topological features as the previously reported zinc(II) terephthalate lactate [Zn2(bdc){(S)‐lac}(dmf)]?DMF framework, but have larger pores and opposite absolute configuration of the chiral centers. The enhanced pores size results in differing stereoselective sorption properties: the new metal–organic frameworks effectively and stereoselectively (ee up to 62 %) accommodate bulkier guest molecules (alkyl aryl sulfoxides) than the parent [Zn2(bdc){(S)‐lac}(dmf)]?DMF, while the latter demonstrates decent enantioselectivity toward precursor of chiral anticancer drug sulforaphane, CH3SO(CH2)4OH. The new homochiral porous metal–organic coordination polymers are capable of catalyzing a highly selective oxidation of bulkier sulfides (2‐NaphSMe (2‐C10H7SMe) and PhSCH2Ph) that could not be achieved by the smaller‐pore [Zn2(bdc){(S)‐lac}(dmf)]?DMF. The sorption of different guest molecules (both R and S isomers) into the chiral pores of [Zn2(bdc){(S)‐lac}(dmf)]?DMF was modeled by using ab initio calculations that provided a qualitative explanation for the observed sorption enantioselectivity. The high stereo‐preference is accounted for by the presence of coordinated inner‐pore DMF molecule that forms a weak C? H???O bond between the DMF methyl group and the (S)‐PhSOCH3 sulfinyl group.  相似文献   

9.
《中国化学快报》2023,34(8):108080
Due to the high local concentration of substrates in confined space, porous solid Brønsted acids have been extensively explored for efficient acid-catalyzed reaction. However, the porous structures with strong Brønsted acids lack long-term stability due to chemical hydrolysis. Moreover, the products inhibition effect in confined rigid cavities severely obstructs subsequent catalysis. Here, tubular Brønsted acid catalyst with unique recognition of protons was presented by self-assembly of pH-responsive aromatic amphiphiles. The responsive assembly could mechanically transfer hydrogen ions from low-concentration acidic solution into tubular defined pores, thereby producing effective catalytic activity for Mannich reactions in mildly acidic solution. Notably, the tubular catalyst unfolded into flat sheets upon addition of triethylamine for efficient release of products, which could be recovered by subsequent acidification and the catalytic activity still remained. Therefore, the porous Brønsted acid with reversible assembly provides a new strategy for mass synthesis through increasing conversion times.  相似文献   

10.
Can achiral organocatalysts linked to chiral polyanionic metal oxide clusters provide good selectivity in enantioselective C?C bond formations? The answer to this question is investigated by developing a new active hybrid polyoxometalate‐based catalyst for asymmetric Diels–Alder reaction. Chirality transfer from the chiral anionic polyoxometalate to the covalently linked achiral imidazolidinone allows Diels–Alder cycloaddition products to be obtained with good yields and high enantioselectivities when using cyclopentadiene and acrylaldehydes as partners.  相似文献   

11.
Chiral amides derived from O-methyl mandelic acid and achiral amines underwent enantioselective alpha-methylation on treatment with LTMP followed by addition of methyl iodide; chirality transfer from an undeprotonated chiral amide into an achiral enolate in a mixed aggregate is supposed to be responsible for the asymmetric induction.  相似文献   

12.
A highly efficient asymmetric cascade reaction between keto esters and alkynyl alcohols and amides is reported. The success of the reaction was attributed to the combination of chiral Lewis acid N,N′‐dioxide nickel(II) catalysis with achiral π‐acid gold(I) catalysis working as an asymmetric relay catalytic system. The corresponding spiroketals and spiroaminals were synthesized in up to 99 % yield, 19:1 d.r., and more than 99 % ee under mild reaction conditions. Control experiments suggest that the N,N′‐dioxide ligand was essential for the formation of the spiro products.  相似文献   

13.
Low dielectric constant organosilicate films with controllable microstructure have been successfully synthesized by multiple-step sol-gel process and templating method, which are the two basic methods to establish porous network in the films. Ultra-low dielectric constant (k) of around 2.0 can be achieved for both films. The microstructure such as porosity, pore interconnection and pore size of the two types of the films have been studied and compared. It has been found that the sol-gel films have a higher level of porosity comparing to the templating films to obtain the same k value. The sol-gel film has a majority of closed pores with pore size around 5 nm. The templating film has a closed pore structure with pore size around 10 nm. Preliminary results present a very positive prospective for intermetal dielectric applications.  相似文献   

14.
The catalytic enantioselective synthesis of isoindolinones was achieved through the condensation of 2‐acyl‐benzaldehydes and anilines. In the presence of 1 mol % of a chiral phosphoric acid catalyst, reactions reach completion within 10 min and provide products with up to 98 % ee . Anilines with an ortho t ‐butyl group form atropisomeric products, thereby enabling the simultaneous generation of axial and point chirality from two achiral substrates. This method was applied to the first synthesis of mariline A.  相似文献   

15.
A series of functionalized and optically active polybinaphthyls have been synthesized from achiral substrates by asymmetric oxidative phenolic coupling using a chiral 1,5-diaza-cis-decalin copper catalyst. In most cases, a copper tetrafluoroborate catalyst was found to be superior to the copper iodide catalyst, as ortho-iodination of the substrates could be prevented. Three methods for the formation of chiral polymers are described. In the first method, two 2-naphthols linked together at C-6 are subjected to the optimized asymmetric oxidative phenolic coupling conditions to form chiral polynaphthyls. A combination of NMR and HPLC measurements secured the selectivity of the asymmetric coupling. In the second method, substrates containing only one naphthalene were utilized. By incorporating a 2-naphthol and a terminal alkyne, the chiral copper catalysts effect both Glaser-Hay coupling of the alkyne and oxidative asymmetric coupling of the 2-naphthol with remarkable chemoselectivity. The relative reaction rates of various moieties with the chiral catalysts follows the order: benzyl cyanides > aryl alkynes > electron-rich 2-naphthols > electron-deficient 2-naphthols > alkyl alkynes. Because of high chemoselectivity, this approach is useful for the organized assembly of multifunctional substrates in a single operation. In all cases, no cross-coupling is observed between the alkyne and the 2-naphthol. This approach was thus applied to a set of highly functionalized precursors. In this third case, the biaryl coupling was performed first and a Glaser-Hay coupling was performed in a separate step to generate a highly functionalized polymer. In some cases, the resultant chiral polymers exhibit very large optical rotations.  相似文献   

16.
Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru‐based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations.  相似文献   

17.
We describe a new and very versatile method to place chosen chemical functionalities at the edge of the pores of macroporous materials. The method is based on the synthesis and self‐assembly of inorganic block copolymers (BCPs) having chiral rigid segments bearing controllable quantities of randomly distributed functional groups. The synthesis of a series of optically active block copolyphosphazenes (PP) with the general formula [N?P(R‐O2C20H12)0.9(FG)0.2]nb‐[N?PMePh]m (FG=‐OC5H4N ( 6 ), ‐NC4H8S ( 7 ), and ‐NC4H8O ( 8 )), was accomplished by the sequential living cationic polycondensation of N‐silylphosphoranimines, using the mono‐end‐capped initiator [Ph3P?N?PCl3][Cl] ( 3 ). The self‐assembly of the phosphazene BCPs 6 – 8 led to chiral porous films. The functionality present on those polymers affected their self‐assembly behaviour resulting in the formation of pores of different diameters (Dn=111 ( 6 ), 53 ( 7 ) and 77 nm ( 8 )). The specific functionalisation of the pores was proven by decorating the films with gold nanoparticles (AuNPs). Thus, the BCPs 6 and 7 , having pyridine and thiomorpholine groups, respectively, were treated with HAuCl4, followed by reduction with NaBH4, yielding a new type of block copolyphosphazenes, which self‐assembled into chiral porous films specifically decorated with AuNPs at the edge of the pores.  相似文献   

18.
Scanning tunnelling microscope observations at the 1‐phenyloctane/graphite interface reveal how chiral structural information at the molecular level is transferred and expressed structurally at the 2D supramolecular level for a porous system. The chirality of self‐assembled molecular networks formed by chiral dehydrobenzo[12]annulene (cDBA) derivatives having three chiral chains and three achiral chains, alternatingly, is compared with those of cDBAs having six chiral chains reported previously. While for all cDBAs homochiral surfaces are formed, their handedness is not simply a reflection of the absolute configuration of the stereogenic centres. Both the number of stereogenic centres as well as the length of the achiral chains determine the supramolecular handedness, providing a deep insight into the supramolecular chirality induction mechanisms at play. Moreover, these cDBAs act to induce chirality in porous networks formed by achiral DBAs.  相似文献   

19.
Wang X  Guram A  Caille S  Hu J  Preston JP  Ronk M  Walker S 《Organic letters》2011,13(7):1881-1883
A new synthetic strategy that turns styrene-type olefins into excellent substrates for Rh-catalyzed asymmetric hydrogenation by installing a 2'-hydroxyl substituent is described. This methodology accommodates trisubstituted olefinic substrates in various E/Z mixtures, leading to valuable benzylic chiral compounds including (R)-tolterodine. It is also demonstrated that the 2'-hydroxyl groups could be readily removed in high yield without loss of ee from the products. Thus, this technology represents an attractive alternative to the Ir(P-N) catalyst system for the asymmetric hydrogenation of unfunctionalized olefins.  相似文献   

20.
We report the absolute asymmetric synthesis (AAS) of indenylzinc reagents by using total spontaneous resolution followed by enantiospecific conversion into 1‐chloroindene. The chiral complex [Zn(dcp)(ind)(tmeda)] (dcp=2,6‐dichlorophenoxy and tmeda=N,N,N′,N′‐tetramethylethylenediamine) ( 3 ) was prepared from the achiral starting materials indene, potassium, zinc chloride, TMEDA, and 2,6‐dichlorophenol. The reagent resolved spontaneously on crystallization, and single crystals of 3 react with N‐chlorosuccinimide in the presence of benzoquinone in 2‐propanol to give 1‐chloroindene in >98 % enantiomeric excess. It was found that (R)‐ 3 gave (R)‐1‐chloroindene upon reaction, indicating an SE2′‐mechanism. Since bulk samples of 3 gave optically active product upon chlorination, total spontaneous resolution must have occurred. This demonstrates that enantiopure products can be obtained through the absolute asymmetric synthesis of organometallic reagents starting from achiral materials. The general absolute asymmetric synthesis (AAS) method offers easy access to both enantiomers and an almost limitless variation in the design of the product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号