首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrating gas as a main building block into nanomaterial construction is a challenging mission that remains elusive. Herein, we report a gas‐constructed vesicular system formed by CO2 gas and frustrated Lewis pairs (FLPs). Two molecular triads bearing three bulky borane and phosphine groups are designed as trivalent disc‐like FLP monomers. CO2, as a gas cross‐linker, can drive the two‐dimensional polymerization of these two FLP monomers, leading to the generation of planar FLP networks that further transform into a thermodynamically favored membranous vesicle structure. Gas‐guided vesicle formation is also applicable to other inert but FLP‐activatable gases. Different gas linkages can form vesicles with distinct architectures, sizes, and morphologies. We envisage that this study would suggest a new concept that exploits gases to fabricate tunable nanomaterials.  相似文献   

2.
3.
4.
5.
Reducing frustration: The reaction of Mes(3) P(CO(2) )(AlI(3) )(2) in the presence of a CO(2) atmosphere results in the formation of Mes(3) P(CO(2) )(O(AlI(2) )(2) )(AlI(3) ) and [Mes(3) PI][AlI(4) ] (Mes=2,4,6-Me(3) C(6) H(2) ) with the evolution of CO.  相似文献   

6.
The concept of frustrated Lewis pairs (FLPs) has been widely applied in various research areas, and metal‐free hydrogenation undoubtedly belongs to the most significant and successful ones. In the past decade, great efforts have been devoted to the synthesis of chiral boron Lewis acids. In a sharp contrast, chiral Lewis base derived FLPs have rarely been disclosed for the asymmetric hydrogenation. In this work, a novel type of chiral FLP was developed by simple combination of chiral oxazoline Lewis bases with achiral boron Lewis acids, thus providing a promising new direction for the development of chiral FLPs in the future. These chiral FLPs proved to be highly effective for the asymmetric hydrogenation of ketones, enones, and chromones, giving the corresponding products in high yields with up to 95 % ee. Mechanistic studies suggest that the hydrogen transfer to simple ketones likely proceeds in a concerted manner.  相似文献   

7.
This contribution reports an unprecedentedly efficient dimerization and the first successful polymerization of lignocellulose‐based β‐angelica lactone (β‐AL) by utilizing a selective Lewis pair (LP) catalytic system, thereby establishing a versatile bio‐refinery platform wherein two products, including a dimer for high‐quality gasoline‐like biofuel (C8–C9 branched alkanes, yield=87 %) and a heat‐ and solvent‐resistant acrylic bioplastic (Mn up to 26.0 kg mol?1), can be synthesized from one feedstock by one catalytic system. The underlying reason for exquisite selectivity of the LP catalytic system toward dimerization and polymerization was explored mechanistically.  相似文献   

8.
[(BDI)Mg+][B(C6F5)4] ( 1 ; BDI=CH[C(CH3)NDipp]2; Dipp=2,6-diisopropylphenyl) was prepared by reaction of (BDI)MgnPr with [Ph3C+][B(C6F5)4]. Addition of 3-hexyne gave [(BDI)Mg+ ⋅ (EtC≡CEt)][B(C6F5)4]. Single-crystal X-ray analysis, NMR investigations, Raman spectra, and DFT calculations indicate a significant Mg-alkyne interaction. Addition of the terminal alkynes PhC≡CH or Me3SiC≡CH led to alkyne deprotonation by the BDI ligand to give [(BDI-H)Mg+(C≡CPh)]2 ⋅ 2 [B(C6F5)4] ( 2 , 70 %) and [(BDI-H)Mg+(C≡CSiMe3)]2 ⋅ 2 [B(C6F5)4] ( 3 , 63 %). Addition of internal alkynes PhC≡CPh or PhC≡CMe led to [4+2] cycloadditions with the BDI ligand to give {Mg+C(Ph)=C(Ph)C[C(Me)=NDipp]2}2 ⋅ 2 [B(C6F5)4] ( 4 , 53 %) and {Mg+C(Ph)=C(Me)C[C(Me)=NDipp]2}2 ⋅ 2 [B(C6F5)4] ( 5 , 73 %), in which the Mg center is N,N,C-chelated. The (BDI)Mg+ cation can be viewed as an intramolecular frustrated Lewis pair (FLP) with a Lewis acidic site (Mg) and a Lewis (or Brønsted) basic site (BDI). Reaction of [(BDI)Mg+][B(C6F5)4] ( 1 ) with a range of phosphines varying in bulk and donor strength generated [(BDI)Mg+ ⋅ PPh3][B(C6F5)4] ( 6 ), [(BDI)Mg+ ⋅ PCy3][B(C6F5)4] ( 7 ), and [(BDI)Mg+ ⋅ PtBu3][B(C6F5)4] ( 8 ). The bulkier phosphine PMes3 (Mes=mesityl) did not show any interaction. Combinations of [(BDI)Mg+][B(C6F5)4] and phosphines did not result in addition to the triple bond in 3-hexyne, but during the screening process it was discovered that the cationic magnesium complex catalyzes the hydrophosphination of PhC≡CH with HPPh2, for which an FLP-type mechanism is tentatively proposed.  相似文献   

9.
Electrophilic fluorophosphonium triflates bearing pyridyl ( 3 [OTf]) or imidazolyl ( 4 [OTf])-substituents act as intramolecular frustrated Lewis pairs (FLPs) and reversibly form 1 : 1 adducts with CO2 ( 5 + and 6 +). An unusual and labile spirocyclic tetrahedral intermediate ( 7 2+) is observed in CO2-pressurized (0.5–2.0 bar) solutions of cation 4 + at low temperatures, as demonstrated by variable-temperature NMR studies, which were confirmed crystallographically. In addition, cations 3 + and 4 + actively bind carbonyls, nitriles and acetylenes by 1,3-dipolar cycloaddition, as shown by selected examples.  相似文献   

10.
Reactions of 3‐imino‐azaphosphiridine complexes 1 a,b with carbodiimides 2 a,b , isocyanates 3 a,b , and carbon dioxide are described. Whereas exchange of the carbodiimide unit occurs in the first case, an overall ring expansion takes place with phenyl isocyanate ( 3 a ) and carbon dioxide to yield complexes 4 and 5 bearing novel 1,3,5‐oxazaphospholane ligands; the isopropyl derivative 3 b did not react under these conditions. DFT calculations provide insight into the pathway of the reaction with carbon dioxide with model complex 1 c , revealing effects of initial non‐covalent interactions with the substrate onto the ring bonding, thus triggering an initially masked frustrated Lewis‐pair‐type behavior.  相似文献   

11.
The term boron–ligand cooperation was introduced to describe a specific mode of action by which certain metal-free systems activate chemical bonds. The main characteristic of this mode of action is that one covalently bound substituent at the boron is actively involved in the bond activation process and changes to a datively bound ligand in the course of the bond activation. Within this review, how the term boron–ligand cooperation evolved is reflected on and examples of bond activation by boron–ligand cooperation are discussed. It is furthermore shown that systems that operate via boron–ligand cooperation can complement the reactivity of classic intramolecular frustrated Lewis pairs and applications of this new concept for metal-free catalysis are summarized.  相似文献   

12.
The chemistry of dicationic diboranes with two BII atoms that are engaged in direct B−B bonding is by enlarge unexplored, although these molecules have intriguing properties due to their combined Lewis acidic and electron-donor properties. Unsymmetric dicationic diboranes are extremely rare, but especially attractive due to their polarized B−B bond. In this work we report the directed synthesis of several stable unsymmetric dicationic diboranes by reaction between the electron-rich ditriflato-diborane B2(hpp)2(OTf)2 (hpp=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-α]pyrimidinate) and phosphino-pyridines, establishing B−N and B−P bonds with the diborane concomitant with triflate elimination. In the case of 2-((ditertbutylphosphino)methyl)pyridine, the B−N bond is formed instantly, but the B−P bond formation requires (due to steric constraints) several days at ambient conditions for completion, creating an intermediate that could be used for frustrated Lewis pair (FLP)-like chemistry. Here we test its reaction with an aldehyde, and propose a new type of FLP-like chemistry.  相似文献   

13.
The reaction of a solution of B(C6F4H)3 and either iPr3P or tBu3P with CO2 afforded the species R3P(CO2)B(C6F4H)3 (R=iPr (1), tBu (2)). In a similar fashion the boranes, RB(C6F5)2 (R=hexyl, cyclohexyl (Cy), norbornyl), ClB(C6F5)2, or PhB(C6F5)2 were combined with tBu3P and CO2 to give the species tBu3P(CO2)BR(C6F5)2 (R=hexyl (3), Cy (4), norbornyl (5), Cl (6), Ph (7)). Similarly, the compounds [tBu3PH][RBH(C6F5)2] (R= hexyl (8), Cy (9), norbornyl (10)) were prepared by reaction of the precursor frustrated Lewis pair (FLP) with H2. Subsequent reactions of 9 and 10 with CO2 afforded the species [((C6F5)2BR)2(μ-HCO2)][tBu3PH] (R= Cy (11), norbornyl (12)). In related chemistry, combinations of the boranes RBG(C6F5)2 (R=hexyl, Cy, norbornyl) with tBu3P treated with an equivalent of formic acid gave [(C6F5)2BR(HCO2)][tBu3PH] (R=hexyl (13), Cy (14), norbornyl (15)). Subsequent addition of an additional equivalent of borane provides a second synthetic route to 11 and 12. Crystallographic studies of compounds 2-6 and 8-14 are reported and discussed. Further understanding of the FLP complexation and activation of CO2 is provided by computational studies.  相似文献   

14.
Reactions of phosphine‐derived carbenes with 9‐borabicyclo[3.3.1]nonane (9‐BBN) result in ring‐expansion reactions to generate novel intramolecular frustrated Lewis pairs (FLPs). These FLPs effect the catalytic reduction of CO2 in the presence of boranes to give BOB and methoxy‐borate species.  相似文献   

15.
The intramolecular “inverse” frustrated Lewis pairs (FLPs) of general formula 1-BR2-2-[(Me2N)2C=N]-C6H4 ( 3 – 6 ) [BR2=BMes2 ( 3 ), BC12H8, ( 4 ), BBN ( 5 ), BBNO ( 6 )] were synthesized and structurally characterized by multinuclear NMR spectroscopy and X-ray analysis. These novel types of pre-organized FLPs, featuring strongly basic guanidino units rigidly linked to weakly Lewis acidic boryl moieties via an ortho-phenylene linker, are capable of activating H−H, C−H, N−H, O−H, Si−H, B−H and C=O bonds. 4 and 5 deprotonated terminal alkynes and acetylene to form the zwitterionic borates 1-(RC≡C-BR2)-2-[(Me2N)2C=NH]-C6H4 (R=Ph, H) and reacted with ammonia, BnNH2 and pyrrolidine, to generate the FLP adducts 1-(R2HN→BR2)-2-[(Me2N)2C=NH]-C6H4, where the N-H functionality is activated by intramolecular H-bond interactions. In addition, 5 was found to rapidly add across the double bond of H2CO, PhCHO and PhNCO to form cyclic zwitterionic guanidinium borates in excellent yields. Likewise, 5 is capable of cleaving H2, HBPin and PhSiH3 to form various amino boranes. Collectively, the results demonstrate that these new types of intramolecular FLPs featuring weakly Lewis acidic boryl and strongly basic guanidino moieties are as potent as conventional intramolecular FLPs with strongly Lewis acidic units in activating small molecules.  相似文献   

16.
The geminal frustrated Lewis pair (FLP) (F5C2)3SnCH2P(tBu)2 ( 2 ) was prepared by reacting (F5C2)3SnCl with LiCH2P(tBu)2. It is neutral and contains an extremely electronegatively substituted, but relatively soft (hard–soft acid–base, HSAB) acidic tin function. Its FLP‐type reactivity was proven by reaction with a variety of small molecules (CO2, SO2, CS2, PhNCO, HCl, (Ph3P)AuCl). However, it shows no reaction in H/D scrambling experiments with H2/D2 mixtures and binds CO2 reversibly, as was observed by VT‐NMR spectroscopy. Compound 2 and all its adducts were completely characterized by means of multinuclear NMR spectroscopy, elemental analysis, and X‐ray diffraction experiments.  相似文献   

17.
Frustrated Lewis pairs (FLPs) have a great potential for activation of small molecules. Most known FLP systems are based on boron or aluminum atoms as acid functions, few on zinc, and only two on boron‐isoelectronic silicenium cation systems. The first FLP system based on a neutral silane, (C2F5)3SiCH2P(tBu)2 ( 1 ), was prepared from (C2F5)3SiCl with C2F5 groups of very high electronegativity and LiCH2P(tBu)2. 1 is capable of cleaving hydrogen, and adds CO2 and SO2. Hydrogen splitting was confirmed by H/D scrambling reactions. The structures of 1 , its CO2 and SO2 adducts, and a decomposition product with CO2 were elucidated by X‐ray diffraction.  相似文献   

18.
The guanidine 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and the substituted derivatives [TBD–SiR2]+ and TBD–BR2 reacted with SO2 to give different FLP–SO2 adducts. Molecular structures, elucidated by X-ray diffraction, showed some structural similarities with the analogous CO2 adducts. Thermodynamic stabilities were both experimentally evidenced and computed through DFT calculations. The underlying parameters governing the relative stabilities of the different SO2 and CO2 adducts were discussed from a theoretical standpoint, with a focus on the influence of the Lewis acidic moiety.  相似文献   

19.
Metal‐free systems, including frustrated Lewis pairs (FLPs) have been shown to bind CO2. By reducing the Lewis acidity and basicity of the ambiphilic system, it is possible to generate active catalysts for the deoxygenative hydroboration of carbon dioxide to methanol derivatives with conversion rates comparable to those of transition‐metal‐based catalysts.  相似文献   

20.
The active six-membered cyclo-FLP 6 undergoes a rapid P/B addition reaction to carbon dioxide. At elevated temperature, the resulting heterobicyclo[2.2.2]octane derived product 7 undergoes ring opening and equilibrates with the cyclotetramer (7)4 . In the large macrocyclic structure, four monomeric six-membered cyclo-FLP units are connected by four CO2 molecules to form the supramolecular ring system. The P/B cyclo-FLP 6 undergoes a variety of additional cycloaddition reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号