首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Volume expansion and poor conductivity are two major obstacles that hinder the pursuit of the lithium‐ion batteries with long cycling life and high power density. Herein, we highlight a misfit compound PbNbS3 with a soft/rigid superlattice structure, confirmed by scanning tunneling microscopy and electrochemical characterization, as a promising anode material for high performance lithium‐ion batteries with optimized capacity, stability, and conductivity. The soft PbS sublayers primarily react with lithium, endowing capacity and preventing decomposition of the superlattice structure, while the rigid NbS2 sublayers support the skeleton and enhance the migration of electrons and lithium ions, as a result leading to a specific capacity of 710 mAh g?1 at 100 mA g?1, which is 1.6 times of NbS2 and 3.9 times of PbS. Our finding reveals the competitive strategy of soft/rigid structure in lithium‐ion batteries and broadens the horizons of single‐phase anode material design.  相似文献   

2.
Tin diselenide (SnSe2), as an anode material, has outstanding potential for use in advanced lithium-ion batteries. However, like other tin-based anodes, SnSe2 suffers from poor cycle life and low rate capability due to large volume expansion during the repeated Li+ insertion/de-insertion process. This work reports an effective and easy strategy to combine SnSe2 and carbon nanotubes (CNTs) to form a SnSe2/CNTs hybrid nanostructure. The synthesized SnSe2 has a regular hexagonal shape with a typical 2D nanostructure and the carbon nanotubes combine well with the SnSe2 nanosheets. The hybrid nanostructure can significantly reduce the serious damage to electrodes that occurs during electrochemical cycling processes. Remarkably, the SnSe2/CNTs electrode exhibits a high reversible specific capacity of 457.6 mA h g−1 at 0.1 C and 210.3 mA h g−1 after 100 cycles. At a cycling rate of 0.5 C, the SnSe2/CNTs electrode can still achieve a high value of 176.5 mA h g−1, whereas a value of 45.8 mA h g−1 is achieved for the pure SnSe2 electrode. The enhanced electrochemical performance of the SnSe2/CNTs electrode demonstrates its great potential for use in lithium-ion batteries. Thus, this work reports a facile approach to the synthesis of SnSe2/CNTs as a promising anode material for lithium-ion batteries.  相似文献   

3.
锂离子电池Sn-Co-Zn合金负极材料电沉积及其储锂性能   总被引:1,自引:0,他引:1  
运用电沉积技术制备出Sn-Co-Zn合金电极材料.采用X射线衍射(XRD)和扫描电子显微镜(SEM)分析了该合金材料的相结构和表面形貌.通过循环伏安和电位阶跃实验研究了Sn-Co-Zn合金的电沉积机理,实验表明,Sn-Co-Zn合金电沉积按扩散控制连续成核和三维生长方式进行.XRD结果表明,该合金由CoSn3、Co3Sn2和Zn组成.电化学性能测试表明:Sn-Co-Zn合金电极首次放电(脱锂)容量达751mAh·g-1,首次循环的库仑效率为88%;30周循环之后放电容量为510mAh·g-1.该Sn-Co-Zn合金电极良好的电化学储锂性能可能归因于材料的多相结构.  相似文献   

4.
锂离子电池硅基负极粘结剂发展现状   总被引:2,自引:0,他引:2  
在锂离子电池负极材料的研究中,硅材料以其高达4200 mAh·g-1的理论比容量,成为近年来新能源电池领域的研究热点.但是在锂化/去锂化过程中,硅负极体积变化高达300%,导致快速的容量衰减和较短的循环寿命.目前硅负极改性最有效的方法之一,是通过粘结剂来保持活性物质、导电添加剂和集流体间的接触完整性,减少硅材料在充放电循环过程中体积变化引起的裂化和粉碎,保持硅负极的高容量,提升电池循环性能.基于硅材料作为锂离子电池负极的优异特性,以及目前锂离子电池粘结剂的发展,将针对锂离子电池硅基负极粘结剂做出系统讨论,描述不同粘结剂对电池性能的主要影响,为锂离子电池硅基负极粘结剂的开发和应用提供研究方向.  相似文献   

5.
This work reports the preparation of unique hierarchical yolk/double-shelled SiOx@TiO2@C nanospheres with different voids by a facile sol-gel method combined with carbon coating. In the preparation process, SiOx nanosphere is used as a hard template. Etch time of SiOx yolk affects the morphology and electrochemical performance of SiOx@TiO2@C. With the increase in etch time, the yolk/double-shelled SiOx@TiO2@C with 15 and 30 nm voids and the TiO2@C hollow nanospheres are obtained. The yolk/double-shelled SiOx@TiO2@C nanospheres exhibit remarkable lithium-ion battery performance as anodes, including high lithium storage capacity, outstanding rate capability, good reversibility, and stable long-term cycle life. The unique structure can accommodate the large volume change of the SiOx yolk, provide a unique buffering space for the discharge/charge processes, improve the structural stability of the electrode material during repeated Li+ intercalation/deintercalation processes, and enhance the cycling stability. The SiOx@TiO2@C with 30 nm void space exhibits a high discharge specific capacity of ≈1195.4 mA h g−1 at the current density of 0.1 A g−1 after 300 cycles and ≈701.1 mA h g−1 at 1 A g−1 for over 800 cycles. These results suggest that the proposed particle architecture is promising and may have potential applications in improving various high performance anode materials.  相似文献   

6.
Recently, it has become very important to develop cost-effective anode materials for the large-scale use of lithium-ion batteries (LIBs). Polyoxometalates (POMs) have been considered as one of the most promising alternatives for LIB electrodes owing to their reversible multi-electron-transfer capacity. Herein, Keggin-type [PMo12O40]3− (donated as PMo12) clusters are anchored onto a 3D microporous carbon framework derived from ZIF-8 through electrostatic interactions. The PMo12 clusters can be immobilized steadily and uniformly on the carbon framework, which provides enhanced electrical conductivity and high stability. Compared with PMo12 itself, the as-prepared novel 3D Carbon-PMo12 composite displays a significantly improved Li-ion storage performance as an LIB anode, with excellent reversible specific capacity and rate capacity, as well as high cycling performance (discharge capacity of 985 mA h g−1 after 200 cycles), which are superior to other POM-based anode materials reported so far. The high performance of the Carbon-PMo12 composite can be attributed to the 3D conductive network with fast electron transport, high ratio of pseudocapacitive contribution, and evenly distributed PMo12 clusters with reversible 24-electron transfer capacity. This work offers a facile way to explore novel LIB anodes consisting of electroactive molecule clusters.  相似文献   

7.
有机硅电解液具有优良的热稳定性、低可燃性、无毒性、高电导率和高分解电压等优点,近年来成为了锂离子电池新型电解液的研究热点。本文综述了有机硅电解液的研究进展,重点介绍了聚醚有机硅电解液的设计合成、物理化学性能、与电解质盐和电极材料的匹配性关系及其在电池中的性能表现;简述了有机硅功能化电解液添加剂的研究进展,如成膜添加剂、阻燃添加剂、吸酸吸水添加剂等;最后对有机硅电解液的进一步研究趋势和应用前景进行了展望。  相似文献   

8.
Since the invention of lithium-ion batteries as a rechargeable energy storage system, it has uncommonly promoted the development of society. It has a wide variety of applications in electronic equipment, electric automobiles, hybrid vehicles, and aerospace. As an indispensable component of lithium-ion batteries, anode materials play an essential role in the electrochemical characteristics of lithium-ion batteries. In this review, we described the development from lithium-metal batteries to lithium-ion batteries in detail on the time axis as the first step; This was followed by an introduction to several commonly used anode materials, including graphite, silicon, and transition metal oxide with discussions the charge-discharge mechanism, challenges and corresponding strategies, and a collation of recent interesting work; Finally, three anode materials are summarized and prospected. Hopefully, this review can serve both the newcomers and the predecessors in the field.  相似文献   

9.
采用多步恒电流沉积技术, 在铜箔上电沉积制备了多孔锂-硅薄膜电极(LSF). 用X射线衍射(XRD)和扫描电镜(SEM)测试手段研究了该电极的结构和表面形貌. 作为锂离子电池负极材料, 电化学测试结果表明锂-硅薄膜电极具有较好的循环稳定性, 通过改变电沉积条件, 可有效调控该电极的嵌脱锂容量及首次循环效率. 譬如, 在0.5 mol·L-1四氯化硅+0.7 mo·L-1高氯酸锂的碳酸丙烯酯电解液中, 首先以-3.82 mA·cm-2的恒定电流密度沉积600 s, 再将电流密度恒定为-1.27 mA·cm-2, 继续电沉积7200 s, 制得锂-硅薄膜电极(LSF-3), 该电极以12.7 μA·cm-2的电流密度预循环2次, 其首次循环库仑效率高达97.1%. 预循环2次后, 电流密度增加到25.5 μA·cm-2, 此时,锂-硅薄膜电极充电质量比容量和面积比容量分别为1410 mAh·g-1及240.6 μAh·cm-2; 50次循环后充电比容量为179 μAh·cm-2 (1049 mAh·g-1), 容量保持率为74.4%. 锂-硅薄膜电极中的活性锂组分可补偿首次循环时不可逆容量损失, 同时薄膜电极中的多孔结构可缓解电极材料的体积效应并改善其循环性能.  相似文献   

10.
纳米储锂电极材料由于奇特的纳米效应与动力学优势,为锂离子电池的发展提供了新的机遇.本文介绍了锂离子电池电极材料的尺寸效应、形貌效应以及电极材料碳包覆的作用;并以作者的近期研究为主,着重讨论了几种"动力学稳定"的纳微结构电极材料和具有"三维混合导电网络"结构的高倍率电极材料.  相似文献   

11.
Organic carbonyl electrode materials are widely employed for alkali metal-ion secondary batteries in terms of their sustainability, structure designability and abundant resources. As a typical redox-active organic electrode materials, pyrene-4, 5, 9, 10-tetraone (PT) shows high theoretical capacity due to the rich carbonyl active sites. But its electrochemical behavior in secondary batteries still needs further exploration. Herein, PT-based linear polymers (PPTS) is synthesized with thioether bond as bridging group and then employed as an anode material for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). As expected, PPTS shows improved conductivity and insolubility in the non-aqueous electrolyte. When used as an anode material for LIBs, PPTS delivers a high reversible specific capacity of 697.1 mAh g−1 at 0.1 A g−1 and good rate performance (335.4 mAh g−1 at 1 A g−1). Moreover, a reversible specific capacity of 205.2 mAh g−1 at 0.05 A g−1 could be obtained as an anode material for SIBs.  相似文献   

12.
Silicon-based materials that have higher theoretical specific capacity than other conventional anodes, such as carbon materials, Li2TiO3 materials and Sn-based materials, become a hot topic in research of lithium-ion battery (LIB). However, the low conductivity and large volume expansion of silicon-based materials hinders the commercialization of silicon-based materials. Until recent years, these issues are alleviated by the combination of carbon-based materials. In this review, the preparation of Si/C materials by different synthetic methods in the past decade is reviewed along with their respective advantages and disadvantages. In addition, Si/C materials formed by silicon and different carbon-based materials is summarized, where the influences of carbons on the electrochemical performance of silicon are emphasized. Lastly, future research direction in the material design and optimization of Si/C materials is proposed to fill the current gap in the development of efficient Si/C anode for LIBs.  相似文献   

13.
为探索一种高性能的锂离子电池负极材料,采用酸刻蚀法制备了高导电性、高稳定性的二维层状Ti3C2Tx,通过溶剂热法制备了具有高理论比容量的花瓣状VS2纳米片,再经过简单的液相混合得到了二维层状Ti3C2Tx-MXene@VS2复合物。通过扫描电子显微镜、透射电子显微镜、X射线光电子能谱、X射线衍射和能谱分析对复合材料的形貌和结构进行了表征,采用循环伏安、恒流充放电、长循环和交流阻抗谱对复合材料的电化学性能进行了研究。结果表明:VS2纳米片均匀地分布在Ti3C2Tx的层间及表面,该复合物具有高的可逆容量(电流密度为0.1A·g-1时,比容量为610.5mAh·g-1)、良好的倍率性能(电流密度为2A·g-1时,比容量为197.1mAh·g-1)和良好的循环稳定性(电流密度为0.2 A·g-1时,循环600圈后比容量为874.9 mAh·g-1;电流密度为2 A·g-1时,循环1 500圈后比容量为115.9mAh·g-1)。  相似文献   

14.
The development of human society and the continuously emerging environmental problems call for cleaner energy resources. Lithium-ion batteries, since their commercialization in the early 1990s, have been an important power source of mobile phones, laptops as well as other portable electronic devices. Their advantages include environment-friendliness, light weight, and no memory effect compared with lead-acid or nickel-cadmium batteries. Electrode materials play an important role in the performance of lithium-ion batteries. The traditional commercial anode material, graphite, has a theoretical specific capacity of 372 mAh·g-1 and working potential close to 0 V (vs Li+/Li), making it prone to the formation of lithium dendrite, which may cause short circuit especially when large current is applied. Another commercial anode material Li4Ti5O12, which also undergoes an intercalation reaction during lithiation process, has a theoretical specific capacity of 175 mAh·g-1 along with three lithium-ion intercalations per formula unit. This is relatively small, and it has a relatively high working potential of 1.55 V (vs Li+/Li), which reduces its output voltage and specific energy when assembled in full battery. To overcome the shortcomings mentioned above, it is essential to search for new anode materials that are low-cost, environment-friendly, and easy to synthesize. Silicate materials have gained widespread attention owing to their low cost and facile synthesis. Herein, we report for the first time a novel titanosilicate, NaTiSi2O6, synthesized by sol-gel and solid sintering. It is isostructural to pyroxene jadeite NaAlSi2O6, belonging to monoclinic crystal system with a space group of C2/c. By in situ pyrolysis and carbonization of glucose, nanosized NaTiSi2O6 mixed with carbon was successfully obtained with a specific surface area of 132 m2·g-1, calculated according to the Brunauer–Emmett–Teller formula. The specific charge/discharge capacity in the first cycle at current density of 0.1 A·g-1 is 266.6 mAh·g-1 and 542.9 mAh·g-1, respectively, with an initial coulombic efficiency of 49.1%. After 100 cycles, it retains a specific charge capacity of 224.1 mAh·g-1, corresponding to a capacity retention rate of 84.1%. The average working potential of NaTiSi2O6 is 1.2–1.3 V (vs Li+/Li), slightly lower than that of Li4Ti5O12. The reaction mechanism while charging and discharging was determined by in situ X-ray diffraction test as well as selected area electron diffraction. The results showed that NaTiSi2O6 undergoes an intercalation reaction during lithiation process, with two lithium-ion intercalations per formula unit. This makes NaTiSi2O6 a new member of the silicate anode material family, and may provide insights into the development of new silicate electrode materials in the future.  相似文献   

15.
龚俊捷  王建明 《无机化学学报》2021,37(10):1773-1781
选用微米级商业硅铝合金粉末作为原料,采用酸刻蚀、光沉积和后续的还原过程制备了 CoO_x纳米片原位包覆的多孔硅复合材料。探究了不同光沉积时间对pSi@CoO_x材料形貌及其储锂性能的影响。CoO_x纳米片的引入有效改善了材料的导电性并提高了材料的结构稳定性,即使在1 A·g~(-1)的电流密度下循环200圈后,pSi@CoO_x-5的比容量仍能保持774.2 mAh·g~(-1)。  相似文献   

16.
采用高压静电纺丝结合高温煅烧的方法制备了SnO2多孔纳米纤维, 通过调节前驱体浓度获得具有高孔隙率的疏散型纤维, 利用SEM, TGA, XRD和电化学测试等手段对材料进行了表征. 结果表明, SnO2多孔纳米纤维具有较好的电化学性质, 作为锂离子电池负极材料的初始可逆容量为717 mA·h/g, 20次循环后电池的充放电容量保持在320 mA·h/g左右.  相似文献   

17.
通过低温溶剂热法和高温热处理技术合成了橄榄石结构的LiFePO4/carbon (C-LiFePO4)纳米材料. 在此基础上,通过溶液共混法制备了一种新型的聚三苯胺(PTPAn)修饰包覆的C-LiFePO4复合锂离子电池正极材料(C-LiFePO4/PTPAn). 利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)以及恒电流充放电等测试方法,考察PTPAn 包覆量对C-LiFePO4/PTPAn 复合正极材料性能的影响. 结果表明:通过溶液共混法PTPAn能够致密地包覆在C-LiFePO4表面,形成一个有效的电子/离子传输通道从而有效提高CLiFePO4基复合材料的电化学活性. 所有样品中C-LiFePO4/10% (w) PTPAn作为正极材料呈现出最佳的电化学性能,在0.1C倍率恒流充放电下材料首次放电比容量为154.5 mAh·g-1,在10C高倍率恒流充放电下材料的放电比容量达到114.2 mAh·g-1. 当C-LiFePO4/PTPAn 复合材料表面包覆的PTPAn 含量进一步增加,复合材料的电化学性能出现下降的趋势. 电化学阻抗测试表明PTPAn包覆层明显减小了C-LiFePO4电极的电荷转移电阻.  相似文献   

18.
Nb2O5 possesses superior fast Li+ storage capability for LIB anodes, benefiting from its fast pseudocapacitive behavior and low volumetric change within the cycling processes. However, the poor electric conductivity for Nb2O5 restricts its reaction kinetics and rate property. Herein, Nb2O5/carbon (C) submicrostructures are fabricated by solvothermal method followed by calcination process. The Nb2O5/C submicrostructures exhibit outstanding rate behavior and cyclic performance (332 (194) mAh g−1 after 1000 cycles at 1 (5) A g−1). The superior electrochemical property is attributed to the distinctive structure for Nb2O5/C submicrostructures, in which Nb2O5 nanoparticles uniformly distributed within Nb2O5/C composite can protect Nb2O5 nanoparticles from agglomeration, and the porous carbon matrix can enhance electron/ion conductivity. This work furnishes a novel strategy for fabricating Nb2O5/C submicrostructures with superior Li+ storage performance, which can be potentially used to design other metal oxide/C submicrostructures for second battery anode.  相似文献   

19.
In pursuit of high-performance cathode materials for lithium-ion batteries with high energy and power densities, porous LiFe0.4Mn0.6PO4/CNF free-standing electrodes have been successfully prepared through a facile ionic liquid (IL) assisted electrospinning method. Owing to the hierarchical porosity and N-doped carbon layer derived from the ionic liquid, the resulting electrodes exhibited superior electrochemical performances with an improvement of conductivity and pseudocapacitive contribution, delivering a discharge capability of 162.7, 133.5, 114.5, and 102.6 mAh g−1 at the current rates of 0.1, 1, 5, and 10 C, respectively. It is highly expected that this facile IL-assisted electrospinning method will lead to further developments for other phosphate-based free-standing electrodes, which offers a new route in designing polyanionic cathodes for high-performance Li-ion batteries.  相似文献   

20.
应用真空浸渍法制备二氧化锡/碳气凝胶的复合材料. XRD、BET、SEM及TEM等测试结果显示,二氧化锡纳米颗粒(5~10 nm)均匀地填充在碳气凝胶的孔道内部. 在100 mA/g的电流密度下经过100周次充放电测试,该材料的容量保持率为首次循环的61.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号