首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three imine‐based metal complexes, having no overlap in terms of their compositions, have been simultaneously generated from the self‐sorting of a constitutional dynamic library (CDL) containing three amines, three aldehydes, and three metal salts. The hierarchical ordering of the stability of the three metal complexes assembled and the leveraging of the antagonistic and agonistic relationships existing between the constituents within the constitutional dynamic network corresponding to the CDL were pivotal in achieving the sorting. Examination of the process by NMR spectroscopy showed that the self‐sorting of the FeII and ZnII complexes depended on an interplay between the thermodynamic driving forces and a kinetic trap involved in their assembly. These results also exemplify the concept of “simplexity”—the fact that the output of a self‐assembling system may be simplified by increasing its initial compositional complexity—as the two complexes could self‐sort only in the presence of the third pair of organic components, those of the CuI complex.  相似文献   

2.
In this paper we report an extended series of 2,6-(iminoarene)pyridine-type ZnII complexes [(Lii)2Zn]II, which were surveyed for their ability to self-exchange both their ligands and their aromatic arms and to form different homoduplex and heteroduplex complexes in solution. The self-sorting of heteroduplex complexes is likely to be the result of geometric constraints. Whereas the imine-exchange process occurs quantitatively in 1:1 mixtures of [(Lii)2Zn]II complexes, the octahedral coordination process around the metal ion defines spatial-frustrated exchanges that involve the selective formation of heterocomplexes of two, by two different substituents; the bulkiest ones (pyrene in principle) specifically interact with the pseudoterpyridine core, sterically hindering the least bulky ones, which are intermolecularly stacked with similar ligands of neighboring molecules. Such a self-sorting process defined by the specific self-constitution of the ligands exchanging their aromatic substituents is self-optimized by a specific control over their spatial orientation around a metal center within the complex. They ultimately show an improved charge-transfer energy function by virtue of the dynamic amplification of self-optimized heteroduplex architectures. These systems therefore illustrate the convergence of the combinatorial self-sorting of the dynamic combinatorial libraries (DCLs) strategy and the constitutional self-optimized function.  相似文献   

3.
Cu(II) and a bis-β-diketone ligand generate a small constitutional dynamic library (CDL). The designed introduction of a well suited guest drives the self-sorting of the system toward a supramolecular triangle. Alternatively, the triangle self-assembly is templated by the same guest in a one-pot synthesis.  相似文献   

4.
To investigate the relationship between antimicrobial activities and the formation constants of CuII, NiII and CoII complexes with three Schiff bases, which were obtained by the condensation of 2-pyridinecarboxyaldehyde with DL-alanine, DL-valine and DL-phenylalanine, have been synthesized. Schiff bases and the complexes have been characterized on the basis of elemental analyses, magnetic moments (at ca. 25 °C), molar conductivity, thermal analyses and spectral (i.r., u.v., n.m.r.) studies. The i.r. spectra show that the ligands act in a monovalent bidentate fashion, depending on the metal salt used and the reaction pH = 9, 8 and 7 medium, for CuII, NiII and CoII, respectively. Square-planar, tetrahedral and octahedral structures are proposed for CuII, NiII and CoII, respectively. The protonation constants of the Schiff bases and stability constants of their ML-type complexes have been calculated potentiometrically in aqueous solution at 25 ± 0.1 °C and at 0.1 M KCl ionic strength. Antimicrobial activities of the Schiff bases and the complexes were evaluated for three bacteria (Bacillus subtillis, Staphylococcus aureus, and Escherichia coli) and a yeast (Candida albicans). The structure–activity correlation in Schiff bases and their metal(II) complexes are discussed, based on the effect of their stability contants.  相似文献   

5.
DNA three-way junction (3WJ) structures are essential building blocks for the construction of DNA nanoarchitectures. We have synthesized a bipyridine (bpy)-modified DNA 3WJ by using a newly designed bpy-modified nucleoside, Ubpy- 3 , in which a bpy ligand is tethered via a stable amide linker. The thermal stability of the bpy-modified 3WJ was greatly enhanced by the formation of an interstrand NiII(bpy)3 complex at the junction core (ΔTm=+17.7 °C). Although the stereochemistry of the modification site differs from that of the previously reported bpy-modified nucleoside Ubpy- 2 , the degree of the NiII-mediated stabilization observed with Ubpy- 3 was comparable to that of Ubpy- 2 . Structure induction of the 3WJs and the duplexes was carried out by the addition or removal of NiII ions. Furthermore, NiII-mediated self-sorting of 3WJs was performed by using the bpy-modified strands and their unmodified counterparts. Both transformations were driven by the formation of NiII(bpy)3 complexes. The structural induction and self-sorting of bpy-modified 3WJs are expected to have many potential applications in the development of metal-responsive DNA materials.  相似文献   

6.
Alkyl transition metal reagents are being increasingly used for alkylations in organic synthesis. They have various advantages over alkyllithium and alkyl-magnesium reagents including higher selectivity, lower basicity, and—as long as the transition metal is not in its highest oxidation state—their willingness to undergo oxidative addition with electrophiles. Alkyl derivatives of FeII and CoII, which are not stabilized by special ligands but still can be easily handled, are in many cases superior to the well-known alkyl–CuI and -MnII reagents and can also undergo unexpected reactions. The introduction of alkyl-cyanoate complexes of FeII and CoII, the cyanide ligands of which (in contrast to neutral π-acidic ligands) do not reduce the reactivity, has led to further advances. Reaction mechanisms will be discussed and comparisons will be made with alkylating reagents containing CuI, MnII, NiII, or TiIV as well as with Pd-catalyzed coupling reactions. Furthermore, it will be shown that super-ate FeII complexes are almost certainly the reactive species in highly selective catalytic alkylations.  相似文献   

7.
This review is aimed at updating the recent development on the metal complexes bearing azolate‐containing chelates that have received a growing attention from both the industrial and academic sectors. Particular emphasis is given to the luminescent metal complexes, for which tridentate and multidentate bonding interactions give rise to both higher ligand field strength and better rigidity versus their bidentate counterparts—consequently, this is beneficial to the chemical stability and emission efficiency needed for applications such as organic light‐emitting diodes and bio‐imaging. Their basic designs involve chelates, such as monoanionic 6‐azolyl 2,2′‐bipyridine, dianionic 2,6‐diazolylpyridine, and 2‐azolyl‐6‐phenylpyridine, and the core metal ion spanning from main group elements, such as GaIII and InIII, to the late transition metal ions such as RuII, OsII, IrIII, and PtII and even the lanthanides. Furthermore, the great versatility of these azolate chelates for assembling the robust and emissive metal complexes, provides bright prospect in future optoelectronic investigations.  相似文献   

8.
Arene complexes of main-group metals were, until recently, rare species—in contrast to the now classical, analogous complexes of transition metals. In systematic investigations, it has been possible to prepare and structurally characterize arene complexes of the univalent elements gallium, indium, and thallium, which directly follow the d-block elements in the periodic table. This new type of compound is characterized by centric (η6) coordination of the metal to the arene; both mono- and bis(arene) complexes are known. The interaction can be explained by the perfect agreement between the HOMO/LUMO symmetry of the arene and of the low-valent metal. The electronic states of the nd10(n + 1)s2 configuration, which are partially modified by relativistic effects, play a particularly important role. The relationship to the few known complexes of the neighboring elements (SnII, PbII) becomes plausible via the isoelectronic principle. The arene/GaI, InI, TlI systems are of potential significance as homogeneous reducing agents and as agents for the activation of aromatic compounds, the purification of metals, and the separation of metals from nonaqueous media.  相似文献   

9.
Summary 2-Aminopyridine reacts with acetylacetone in the presence of VOII, MnII, FeII, CoII, NiII, and CuII metal salts to give complexes of the type [VO(Ap2ac)2X]X and [M(Ap2ac)2X2] where (Ap2ac) is the ligand formedin situ. The complexes are characterised as distorted octahedral by analyses, conductance, molecular weight, magnetic, electronic and i.r. spectral studies. The i.r. studies reveal that two molecules of aminopyridine are joined by a molecule of acetylacetone through a three carbon atom bridge and that the ligand coordinates through the azomethine and imino nitrogen atoms, whereas pyridine does not take part in coordination. The electronic spectra have been interpreted and tentative assignments are made. In the far i.r. spectra, various metal ligand vibrations are observed and discussed. Attempts to carry out electrophilic substitutions in the complexes failed.  相似文献   

10.
Highly selective, narcissistic self-sorting has been observed in the one-pot synthesis of three organometallic molecular cylinders of type [M3{L-(NHC)3}2](PF6)3 (M=Ag+, Au+; L=1,3,5-benzene, triphenylamine, or 1,3,5-triphenylbenzene) from L-(NHC)3 and silver(I) or gold(I) ions. The molecular cylinders contain only one type of tris-NHC ligand with no crossover products detectable. Transmetalation of the tris-NHC ligands from Ag+ to Au+ in a one-pot reaction with retention of the supramolecular structures is also demonstrated. High-fidelity self-sorting was also observed in the one-pot reaction of benzene-bridged tris-NHC and tetrakis-NHC ligands with Ag2O. This study for the first time extends narcissistic self-sorting in metal–ligand interactions from Werner-type complexes to organometallic derivatives.  相似文献   

11.
Transition metal complexes of arginine (using Co(II), Ni(II), Cu(II) and Zn(II) cations separately) were synthesized and characterized by FTIR, TG/DTA‐DrTG, UV‐Vis spectroscopy and elemental analysis methods. Cu(II)‐Arg complex crystals was found suitable for x‐ray diffraction studies. It was contained, one mole CuII and Na+ ions, two arginate ligands, one coordinated aqua ligand and one solvent NO3? group in the asymmetric unit. The principle coordination sites of metal atom have been occupied by two N atoms of arginate ligands, two carboxylate O atoms, while the apical site was occupied by one O atom for CuII cation and two O atoms for CoII, NiII, ZnII atoms of aqua ligands. Although CuII ion adopts a square pyramidal geometry of the structure. CoII, NiII, ZnII cations have octahedral due to coordination number of these metals. Neighbouring chains were linked together to form a three‐dimensional network via hydrogen‐bonding between coordinated water molecule, amino atoms and O atoms of the bridging carboxylate groups. CuII complex was crystallized in the monoclinic space group P21, a = 8.4407(5) Å, b = 12.0976(5) Å, c = 10.2448(6) Å, V = 1041.03(10) Å3, Z = 2. Structures of the other metal complexes were similar to CuII complex, because of their spectroscopic studies have in agreement with each other. Copper complex has shown DNA like helix chain structure. Lastly, anti‐bacterial, anti‐microbial and anti‐fungal biological activities of complexes were investigated.  相似文献   

12.
A new series of the polydentate Schiff base CuII, CoII, NiII, PdII and ZnII complexes derived from ethylenediamine (eda), diethylenetriamine (dea) and tris(2-aminoethyl)amine (taa) have been prepared by template condensation in MeOH solution, and characterized by i.r., electronic spectral data, elemental analyses, conductivity and magnetic measurements. The 1H- and 13C-n.m.r. and mass spectral data of the NiII, PdII and ZnII complexes have been recorded. In all complexes, some of the chloride ions coordinate to the metal ions. From conductivity measurements, it is shown that the complexes are electrolytes. The NiII, PdII and ZnII complexes have diamagnetic character. In this study, the Schiff base CuII and CoII complexes have sub-normal magnetic moments commensurate with their binuclear or tetranuclear nature. Some show antimicrobial activity against bacteria and yeast.  相似文献   

13.
The solid complexes of MnII, FeIII, CoII, NiII and CuII with 3-(3-furan-2yl-acryloyl)-6-methyl-pyran-2,4-dione(L1) and 3-(3-thiophene-2yl-acryloyl)-6-methyl-pyran-2,4-dione (L2) have been synthesized and characterized by elemental analysis, conductometry, thermal analysis, magnetic, i.r., P-n.m.r., u.v.–vis, X-ray diffraction and antimicrobial study. From the analytical and spectral data, the stoichiometry of the complexes has been found to be 1:2 (metal:ligand). I.r. spectral data suggest that the ligand behaves as a dibasic bidentate ligand with O:O donor sequence towards metal ions. The physico-chemical data suggests distorted octahedral geometry for CuII complexes and octahedral geometry for all other complexes. The X-ray diffraction suggests an Orthorhombic crystal system for the CuII complex and Monoclinic crystal system for CoII and NiII complexes of ligand L1. The ligands and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli, and the fungicidal activity against Aspergillus flavus, Curvularia lunata and Penicillium notatum.  相似文献   

14.
Asymmetrical macrocyclic complexes of MnII, CoII, NiII, CuII and ZnII have been synthesized by the template process using bis(benzil)ethylenediamine as precursor. Bis(benzil)ethylenediamine reacts with transition metal chlorides and trimethoprim in a 1:1:1 molar ratio in methanol to give several solid metal complexes of the general composition [M(L)X2] (M = MnII, CoII, NiII, CuII and ZnII, L = ligand and X = Cl?). They were characterized by physicochemical and spectroscopic techniques. Based on analytical, spectral and magnetic moments, all the complexes are identified as distorted octahedral structures. All the complexes are of the [M(L)X2] type. The shifts of the ν(CN) (azomethine) stretches have been monitored. To find out the donor sites of the ligands, the activity data show that the metal complexes are more potent than the parent ligand. The [M(L)X2] complexes showed a broad spectrum of antimicrobial activity in vitro against both gram-positive and gram-negative human pathogenic bacterial isolates and the antimicrobial spectrum enhanced only with a combination of metal chlorides and trimethoprim complex. From the results it is imperative that the synthesized macrocyclic [M(L)X2] complexes exhibit potent broad spectrum antibacterial activity.  相似文献   

15.
In the three title complexes, namely (2,2′‐biquinoline‐κ2N,N′)dichloro­palladium(II), [PdCl2(C18H12N2)], (I), and the corresponding copper(II), [CuCl2(C18H12N2)], (II), and zinc(II) complexes, [ZnCl2(C18H12N2)], (III), each metal atom is four‐coordinate and bonded by two N atoms of a 2,2′‐biquinoline molecule and two Cl atoms. The PdII atom has a distorted cis‐square‐planar coordination geometry, whereas the CuII and ZnII atoms both have a distorted tetra­hedral geometry. The dihedral angles between the N—M—N and Cl—M—Cl planes are 14.53 (13), 65.42 (15) and 85.19 (9)° for (I), (II) and (III), respectively. The structure of (II) has twofold imposed symmetry.  相似文献   

16.
Summary The three new potential chelating ligands dihydridobis-, hydridotris- and tetrakis-(thiophenolyl)borate anions, and their chelates with first row transition metals have been synthesised. The divalent and trivalent metal ions form complexes in 12 and 13 (metal:ligand) ratios respectively. The number of ligands coordinated correspond to the number of anions replaced in the metal salis. The compounds were characterized by elemental analysis, i.r. spectra, magnetic susceptibility measurements and electronic spectral studies. The CrIII and FeIII complexes of dihydridobis- and hydridotris-(thiophenolyl)borates appear to be octahedral, and those of CuII are proposed to be square planar. Tetrahedral geometry is suggested for the MnII, CoII and NiII complexes. The tetrakis-(thiophenolyl)borate yielded octahedral complexes with all the metal ions except for CuII which is square planar. The ligand field parameters 10Dq, B and have also been calculated wherever possible. The ligands may be placed in the vicinity of EDTA in the nephelauxetic series.  相似文献   

17.
Summary A series of metal complexes with three new tetradentate Schiff bases derived from benzoin and benzil withc-toluidine and benzil with diaminoethane have been prepared and characterised by physical and chemical methods. The modes of bonding of the ligands with the metal ions have been proposed. Electronic spectra and room temperature magnetic moment values suggest octahedral geometry for the CoII and NiII complexes, whereas the HgII and CdII complexes have tetrahedral geometry. The CuII complexes are square planar. Apart from the complexes of the Schiff bases derived from benzoin, all the other complexes have high molar conductance values suggesting them to be electrolytes. The complexes have been screened against some fungal pathogens.  相似文献   

18.
The synthesis and characterization of some transition metal cis-3,7-dimethyl-2,6-octadiensemicarbazone (CDOSC) complexes are reported. The ligand CDOSC yields: [ML2 Cl2] and [ML2 Cl2] Cl type complexes, where M = CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and HgII, L = CDOSC. Structures of the complexes were determined using elemental analysis, molar conductivity, magnetic measurements, i.r. and electronic, as well as n.m.r spectra. CDOSC acts as a bidentate ligand in all the complexes. All the newly synthesized metal complexes, as well as the ligand, were screened for their antibacterial activity. All the complexes exhibit strong inhibitory action against Gram (+) bacteria Staphylococcus aureus and Gram (−) bacteria Escherichia coli. The antibacterial activities of the complexes are stronger than those of the ligand CDOSC itself.  相似文献   

19.
The reaction of 2,2′:4,4′′:4′,4′′′‐quaterpyridyl (qtpy), with d6 ruthenium(II) (RuII), and rhenium(I) (ReI) metal centers has been investigated. The pendant pyridyl groups on the products have also been methylated to produce a second series of complexes containing coordinated Meqtpy2+. The absorption spectra of the complexes are dominated by intraligand and charge‐transfer bands. The ruthenium(II) complexes display broad unstructured luminescence consistent with emission from a Ru(d)→diimine(π*) manifold in acetonitrile solutions. In aqueous solutions, their emissions are weaker and the lifetimes are shorter. This effect is particularly acute for complexes incorporating coordinated dipyridylpyrazine, dppz, ligands. Although the emission of the ruthenium(II) complexes containing Meqtpy2+ is generally shorter than their qtpy analogs, it is notable that solvent‐dependent effects are much less intense. The rhenium(I) complexes also display broad unstructured luminescence but, compared with the ruthenium(II) systems, they have a relatively short lifetime in acetonitrile. Electrochemical studies reveal that all of the RuII complexes display chemically reversible metal‐based oxidations. ReI complexes only display irreversible metal‐based oxidations. In most cases, the reduction processes were not fully chemically reversible. The electrochemical and optical studies reveal that the nature of the lowest excited state of these complexes—particularly, the systems incorporating dppz—is highly dependent on the nature of the coordinated ligands. Calculations indicate that, although the excited state of most of the complexes is centered on the qtpy or Meqtpy2+ ligands, the excited state of the complexes containing dppz ligands is switched away from the dppz by qtpy methylation. A crystallographic study on one of the dicationic ruthenium(II) structures reveals that it forms an inclusion complex with benzene.  相似文献   

20.
CoII,III, NiII, and CuII complexes of new dehydroacetic acid N4-substituted thiosemicarbazones have been studied. The substituted thiosemicarbazones, N4-dimethyl-(DA4DM), N4-diethyl-(DA4DE), 3-piperidyl-(DApip) and 3-hexamethyleneiminyl-(DAhexim), when reacted with the metal chlorides, produced two CoII complexes, [Co(DA4DE)Cl2] and [Co(DAhexim)2Cl2]; two CoIII complexes, [Co(DA4DM-H)2Cl] and [Co(DApip-H)(DApip-2H)]; a paramagnetic NiII complex, [Ni(DAhexim)(DAhexim-H)Cl]; three diamagnetic NiII complexes, [Ni(DA4DM-H)Cl], [Ni(DA4DE-H)Cl] and [Ni(DApip-H)Cl]; and four CuII complexes with the analogous stoichiometry of the latter three NiII complexes. These new thiosemicarbazones have been characterized by their melting points, as well as i.r., electronic and 1H-n.m.r. spectra. The metal complexes have been characterized by i.r. and electronic spectra, and when possible, n.m.r. and e.s.r. spectra, as well as elemental analyses, molar conductivities, and magnetic susceptibilities. The crystal and molecular structure of the four-coordinate CuII complex, [Cu(DAhexim-H)Cl] has been determined by single crystal X-ray diffraction and the anionic ligand coordinates via an oxygen of the dehydroacetic acid and the thiosemicarbazone moiety's imine nitrogen and thione sulfur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号