首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare‐earth ions doping and intrinsic emission of lead‐free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first‐principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D47F6‐3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi‐doped Cs2Ag(In1?xTbx)Cl6 NCs could be continuously tuned from green to orange, through the efficient energy‐transfer channel from self‐trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead‐free perovskite NCs and to expand their luminescence applications.  相似文献   

2.
稀土掺杂ZnS纳米晶中稀土离子与纳米基质之间的能量传递   总被引:7,自引:0,他引:7  
以甲基丙烯酸为表面包覆剂在水/醇溶液中合成了ZnS:Eu^3 ,ZnS:Tb^3 纳米晶,用傅里叶变换红外光谱和X射线粉末衍射谱表征了样品的表面与晶型,样品均为立方闪锌矿型,没有出现与稀土离子相关的相;用光致发光和激发谱研究了样品中的发光过程,其中ZnS:Tb^3 纳米晶中存在纳米基质与Tb^3 之间的能量传递,并引起Tb^3 的特征发射。  相似文献   

3.
Two-dimensional (2D) lead-free halide perovskites have generated enormous perception in the field of optoelectronics due to their fascinating optical properties. However, an in-depth understanding on their shape-controlled charge-carrier recombination dynamics is still lacking, which could be resolved by exploring the photoluminescence (PL) blinking behaviour at the single-particle level. Herein, we demonstrate, for the first time, the synthesis of nanocrystals (NCs) and 2D nanosheets (NSs) of layered mixed halide, Cs3Bi2I6Cl3, by solution-based method. We applied fluorescence microscopy and super-resolution optical imaging at single-particle level to investigate their morphology-dependent PL properties. Narrow emission line widths and passivation of non-radiative defects were evidenced for 2D layered nanostructures, whereas the activation of shallow trap states was recognized at 77 K. Interestingly, individual NCs were found to display temporal intermittency (blinking) in PL emission. On the other hand, NS showed temporal PL intensity fluctuations within localized domains of the crystal. In addition, super-resolution optical image of the NS from localization-based method showed spatial inhomogeneity of the PL intensity within perovskite crystal.  相似文献   

4.
Two‐dimensional (2D) lead‐free halide perovskites have generated enormous perception in the field of optoelectronics due to their fascinating optical properties. However, an in‐depth understanding on their shape‐controlled charge‐carrier recombination dynamics is still lacking, which could be resolved by exploring the photoluminescence (PL) blinking behaviour at the single‐particle level. Herein, we demonstrate, for the first time, the synthesis of nanocrystals (NCs) and 2D nanosheets (NSs) of layered mixed halide, Cs3Bi2I6Cl3, by solution‐based method. We applied fluorescence microscopy and super‐resolution optical imaging at single‐particle level to investigate their morphology‐dependent PL properties. Narrow emission line widths and passivation of non‐radiative defects were evidenced for 2D layered nanostructures, whereas the activation of shallow trap states was recognized at 77 K. Interestingly, individual NCs were found to display temporal intermittency (blinking) in PL emission. On the other hand, NS showed temporal PL intensity fluctuations within localized domains of the crystal. In addition, super‐resolution optical image of the NS from localization‐based method showed spatial inhomogeneity of the PL intensity within perovskite crystal.  相似文献   

5.
6.
Bi3+ and lanthanide ions have been codoped in metal oxides as optical sensitizers and emitters. But such codoping is not known in typical semiconductors such as Si, GaAs, and CdSe. Metal halide perovskite with coordination number 6 provides an opportunity to codope Bi3+ and lanthanide ions. Codoping of Bi3+ and Ln3+ (Ln=Er and Yb) in Cs2AgInCl6 double perovskite is presented. Bi3+-Er3+ codoped Cs2AgInCl6 shows Er3+ f-electron emission at 1540 nm (suitable for low-loss optical communication). Bi3+ codoping decreases the excitation (absorption) energy, such that the samples can be excited with ca. 370 nm light. At that excitation, Bi3+-Er3+ codoped Cs2AgInCl6 shows ca. 45 times higher emission intensity compared to the Er3+ doped Cs2AgInCl6. Similar results are also observed in Bi3+-Yb3+ codoped sample emitting at 994 nm. A combination of temperature-dependent (5.7 K to 423 K) photoluminescence and calculations is used to understand the optical sensitization and emission processes.  相似文献   

7.
采用温和的固相反应法合成了具有四方相结构的铽一铕共掺杂的硅酸铝钠(NaAlSiO_4:Tb~(3+),Eu~(3+))发光材料.利用粉末X射线衍射(XRD)、荧光光谱(PL)、时间分辨光谱(TRPL)以及荧光寿命等手段对合成的样品进行表征.研究结果表明:通过改变NaAlSiO_4:Tb~(3+),Eu~(3+)中Eu~(3+)离子的掺杂浓度,可实现其绿光及红光发射的调控;由于Tb~(3+),Eu~(3+)离子间的有效能量传递,Tb~(3+)离子的共掺杂可显著增强该基质中Eu~(3+)离子的发光性能;该能量传递现象可由TRPL光谱等手段进行证实,根据荧光寿命的数值计算可知,从Tb3~(3+)向Eu~(3+)离子的能量传递效率高达95%.  相似文献   

8.
以异丙醇为溶剂,醇热法制备Zn0.5Cd0.5S和Ag2S或CuS掺杂的Zn0.5Cd0.5S纳米晶体,考察了这些纳米晶体在可见光区域的光致发光性能。结果表明,反应温度和反应时间、掺杂剂的浓度和种类对Zn0.5Cd0.5S的发光性能有很大的影响,相比未掺杂Zn0.5Cd0.5S纳米晶体而言,Ag2S或CuS掺杂后其光致发光强度明显增强、半高宽更宽。  相似文献   

9.
The supramolecular terbium complex, {[Tb(SIP)(H2O)5]2(bpy)3(H2O)}n (NaH2SIP = 5-sulfoisophthalic acid monosodium salt and bpy = 4,4'-bipyridyl), has been synthesized by the hydrothermal reaction of Tb4O7 with NaH2SIP and bpy at 165 ℃, and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectrum, powder X-ray diffraction and photoluminescence spectrum. It crystallizes in a monoclinic system, space group C2/c, with a = 30.6840(1), b = 10.9206(2), c = 17.4967(3) A, β= 111.931(1)°, V = 5438.65(14) A^3, Z = 4, C46H52N6O25S2Tb2, Mr = 1470.90, Dc = 1.796 g/cm^3, p = 2.747 mm^-1, F(000) = 2928, the final R = 0.0654 and wR = 0.1322 for 3806 observed reflections with I 〉 2σ(I). In the neutral [Tb(SIP)(H2O)5]2 motif, the Tb(III) ions are linked by the SIP ligands to form a one-dimensional zigzag chain propagating along the c axis. The zigzag chains are linked together by hydrogen bonds and π-π stacking interactions to form a two-dimensional supramolecular framework. The uncoordinated bpy molecules act as pillars to extend the two-dimensional sheets into a distinctive pillared three-dimensional supramolecular structure through O-H...N hydrogen bonds. The photoluminescence of the complex was investigated at room temperature in the solid state.  相似文献   

10.
Silica xerogels containing Eu3+ ions and SnO2 nanocrystals were prepared in the sol‐gel process, and characterized by x‐ray diffraction (XRD) and photoluminescence spectra. Under the excitation at 393 nm, characteristic emission of Eu3+ ions at 614 nm was enhanced with increasing amount of SnO2 nanocrystals. Moreover, when the Eu3+/SnO2 co‐doped samples were excited at 345 nm, corresponding to the sideband of SnO2 nanocrystals, the emission of Eu3+ ions at 614 nm was clearly observed, while no emission of Eu3+ ions for the Eu3+‐doped sample. It may be ascribed to the energy transfer from SnO2 conduction band to Eu3+ conduction band. Further experimental results suggest that the energy transfer may be achieved through surface transition state.  相似文献   

11.
The supramolecular terbium complex, {[Tb(SIP)(H2O)5]2(bpy)3(H2O)}n (NaH2SIP= 5-sulfoisophthalic acid monosodium salt and bpy=4,4'-bipyridyl), has been synthesized by the hydrothermal reaction of Tb4O7 with NaH2SIP and bpy at 165 ℃, and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectrum, powder X-ray diffraction and photoluminescence spectrum. It crystallizes in a monoclinic system, space group C2/c, with a= 30.6840(1), b=10.9206(2), c=17.4967(3), β=111.931(1)o, V=5438.65(14)3, Z=4, C46H52N6O25S2Tb2, Mr=1470.90, Dc=1.796 g/cm3, μ=2.747 mm-1, F(000)=2928, the final R= 0.0654 and wR=0.1322 for 3806 observed reflections with I > 2σ(I). In the neutral [Tb(SIP)(H2O)5]2 motif, the Tb(III) ions are linked by the SIP ligands to form a one-dimensional zigzag chain propagating along the c axis. The zigzag chains are linked together by hydrogen bonds and π-π stacking interactions to form a two-dimensional supramolecular framework. The uncoordinated bpy molecules act as pillars to extend the two-dimensional sheets into a distinctive pillared three-dimensional supramolecular structure through O-H···N hydrogen bonds. The photoluminescence of the complex was investigated at room temperature in the solid state.  相似文献   

12.
13.
The molecular and crystal structure of the terbium(III) trifluoroacetate trihydrate dimer synthesized from terbium(III) carbonate was studied by X-ray diffraction (XRD) analysis. Luminescent data unambiguously show that the compound is one of the isomers of Tb2(CF3COO)6(H2O)6 composition. Evidence has been found for the presence of another isomer in the terbium(III) dimer obtained from terbium(III) hydroxide.  相似文献   

14.
Bi3+ and lanthanide ions have been codoped in metal oxides as optical sensitizers and emitters. But such codoping is not known in typical semiconductors such as Si, GaAs, and CdSe. Metal halide perovskite with coordination number 6 provides an opportunity to codope Bi3+ and lanthanide ions. Codoping of Bi3+ and Ln3+ (Ln=Er and Yb) in Cs2AgInCl6 double perovskite is presented. Bi3+‐Er3+ codoped Cs2AgInCl6 shows Er3+ f‐electron emission at 1540 nm (suitable for low‐loss optical communication). Bi3+ codoping decreases the excitation (absorption) energy, such that the samples can be excited with ca. 370 nm light. At that excitation, Bi3+‐Er3+ codoped Cs2AgInCl6 shows ca. 45 times higher emission intensity compared to the Er3+ doped Cs2AgInCl6. Similar results are also observed in Bi3+‐Yb3+ codoped sample emitting at 994 nm. A combination of temperature‐dependent (5.7 K to 423 K) photoluminescence and calculations is used to understand the optical sensitization and emission processes.  相似文献   

15.
The first high nuclearity, mixed-metal Bi(III)/Mn(IV) and Bi(III)/Mn(III) complexes are reported. The former complexes are [Bi(2)Mn(IV)(6)O(9)(O(2)CEt)(9)(HO(2)CEt)(NO(3))(3)] (1) and [Bi(2)Mn(IV)(6)O(9)(O(2)CPh)(9)(HO(2)CPh)(NO(3))(3)] (2) and were obtained from the comproportionation reaction between Mn(O(2)CR)(2) and MnO(4)(-) in a 10:3 ratio in the presence of Bi(NO(3))(3) (3 equiv) in either a H(2)O/EtCO(2)H (1) or MeCN/PhCO(2)H (2) solvent medium. The same reaction that gives 2, but with Bi(O(2)CMe)(3) and MeNO(2) in place of Bi(NO(3))(3) and MeCN, gave the lower oxidation state product [BiMn(III)(10)O(8)(O(2)CPh)(17)(HO(2)CPh)(H(2)O)] (3). Complexes 1 and 2 are near-isostructural and possess an unusual and high symmetry core topology consisting of a Mn(IV)(6) wheel with two central Bi(III) atoms capping the wheel on each side. In contrast, the [BiMn(III)(10)O(8)](17+) core of 3 is low symmetry, comprising a [BiMn(3)(μ(3)-O)(2)](8+) butterfly unit, four [BiMn(3)(μ(4)-O)](10+) tetrahedra, and two [BiMn(2)(μ(3)-O)](7+) triangles all fused together by sharing common Mn and Bi vertices. Variable-temperature, solid-state dc and ac magnetization data on 1-3 in the 1.8-300 K range revealed that 1 and 2 possess an S = 0 ground state spin, whereas 3 possesses an S = 2 ground state. The work offers the possibility of access to molecular analogs of the multifunctional Bi/Mn/O solids that are of such great interest in materials science.  相似文献   

16.
合成了铕-铽-钆-六氟乙酰丙酮(HFA)三元配合物Eu0.4Tb0.4Gd0.2(HFA)3(TPPO)2(TPPO: 三苯基氧化磷), 其组成和结构经元素分析和红外吸收光谱确认; 研究了三元配合物的发光性能, 以及铽、钆离子对铕离子发光性能的影响. 结果表明, 配合物中存在着声子支助的Tb3+→Eu3+的能量转移, 增强了Eu3+离子的室温特征荧光发射, 且样品的发光颜色随温度的改变而变化, 具有温敏特性.  相似文献   

17.
Despite the great success in the increase in the power conversion efficiency of lead halide perovskite solar cells, the toxicity of lead and the unstable nature of the materials are still major concerns for their wider implementation at the industrial level. Herein, large-size single crystals (SCs) are developed in HI solution by using a temperature lowering method and nanocrystals (NCs) of A3Bi2I9 perovskites [where A=CH3NH3+ (MA)+, Cs+, and (Rb0.05Cs2.95)+] are formed in ethanol (EtOH) and toluene (TOL). The stability of A3Bi2I9 perovskite is investigated by immersing the SCs for 24 h and pellets for 12 h in water. Moreover, the A3Bi2I9 perovskite NCs displays a promising photoluminescence quantum yield of 17.63 % and a long lifetime of 8.20 ns.  相似文献   

18.
碱液回流老化ZrO(OH)_2制备纳米晶ZrO_2的影响因素   总被引:3,自引:0,他引:3  
通过考察回流老化所用的碱液(NH_4OH, NaOH和KOH)介质和容器材质(玻璃 和Teflon)对ZrO(OH)_2凝胶及其焙烧产物ZrO_2的织构/结构和热稳定性的影响, 研究了杂质元素掺杂和凝胶溶解-再沉淀等因素在形成高表面积纳米晶ZrO(OH) _2/ZrO_2过程中的作用。在Teflon容器中,以NH_4OH为介质(pH = 11.5)的回流 老化对ZrO(OH)_2/ZrO_2的性质无明显影响。而使用玻璃容器则可显著提高ZrO(OH) _2/ZrO_2的表面积、孔容和抗烧结性质,并在800℃获得小晶粒(5~7 nm)四方晶 相ZrO_2纳米晶材料;在DTA曲线上ZrO(OH)_2转变成ZrO_2晶体的温度由回流老化前 的463℃提高到810~840℃。在以KOH和NaOH为介质(pH = 13)的实验中,使用玻璃 容器得到与经NH_4OH为介质时相类似的结果;但在Teflon容器中只形成低表面积和 较大尺寸(约20 nm)以单斜相为主的混合晶相ZrO(OH)_2,其在800℃焙烧后形成 大晶粒(35 nm)单斜相ZrO_2。样晶的元素分析结果清楚地揭示出使用玻璃容器时 有SiO_2从器壁溶解掺杂进入ZrO(OH)_2凝胶。样品的表面积和孔容与杂质Si~(4+) 含量之间有顺变关系,表明Si~(4+)掺杂是形成高表面积和大孔容ZrO(OH) _2/ZrO_2、提高ZrO_2晶化温度以及稳定小晶粒四方晶相ZrO_2的最主要因素。在不 发生Si~(4+)掺杂前提下,K~+和Na~+的存在可促进ZrO(OH)_2形成结晶,但对高温 下ZrO_2织构的稳定性影响不大。此外,ZrO(OH)_2凝胶的溶解-再沉淀和骨架网络 有序化也是回流老化影响ZrO(OH)_2/ZrO_2织构的重要因素。  相似文献   

19.
A series of novel KBaSc2(PO4)3:Ce3+/Eu2+/Tb3+phosphors are prepared using a solid‐state reaction. X‐ray diffraction analysis and Rietveld structure refinement are used to check the phase purity and crystal structure of the prepared samples. Ce3+‐ and Eu2+‐doped phosphors both have broad excitation and emission bands, owing to the spin‐ and orbital‐allowed electron transition between the 4f and 5d energy levels. By co‐doping the KBaSc2(PO4)3:Eu2+ and KBaSc2(PO4)3:Ce3+ phosphors with Tb3+ ions, tunable colors from blue to green can be obtained. The critical distance between the Eu2+ and Tb3+ ions is calculated by a concentration quenching method and the energy‐transfer mechanism for Eu2+→Tb3+ is studied by utilizing the Inokuti–Hirayama model. In addition, the quantum efficiencies of the prepared samples are measured. The results indicate that KBaSc2(PO4)3:Eu2+,Tb3+ and KBaSc2(PO4)3:Ce3+,Tb3+ phosphors might have potential applications in UV‐excited white‐light‐emitting diodes.  相似文献   

20.
On Hexafluoroferrates(III): Cs2TlFeF6, Cs2KFeF6, Rb2KFeF6, Rb2NaFeF6, and Cs2NaFeF6 New prepared are the compounds Cs2TlFeF6 (a = 9.211 Å), Cs2KFeF6 (a = 9.041 Å), Rb2KFeF6 (a = 8.868 Å) and Rb2NaFeF6 (a = 8.46 4Å) all cubic Elpasolithes as well as Cs2NaFeF6 (Cs2NaCrF6?type, hexagonal with a = 6.281, c = 30.532 Å), all colourless. Cs2KFeF6 was measured magnetically (70–297,2 K). The spectra of reflection were measured (9000–36000 cm?1). The Madelung Part of Lattice Energy, MAPLE, is calculated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号