首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyurethane (PU) foams are indisputably daily essential materials found in many applications, notably for comfort (for example, matrasses) or energy saving (for example, thermal insulation). Today, greener routes for their production are intensively searched for to avoid the use of toxic isocyanates. An easily scalable process for the simple construction of self‐blown isocyanate‐free PU foams by exploiting the organocatalyzed chemo‐ and regioselective additions of amines and thiols to easily accessible cyclic carbonates is described. These reactions are first validated on model compounds and rationalized by DFT calculations. Various foams are then prepared and characterized in terms of morphology and mechanical properties, and the scope of the process is illustrated by modulating the composition of the reactive formulation. With impressive diversity and accessibility of the main components of the formulations, this new robust and solvent‐free process could open avenues for construction of more sustainable PU foams, and offers the first realistic alternative to the traditional isocyanate route.  相似文献   

2.
Magnetorheological (MR) materials are a group of smart materials which have the controllable magnetic properties with an external magnetic field. Magnetic foams, a specific type of MR solids, were synthesized from flexible polyurethane (PU) foams and carbonyl iron particles. Effects of the carbonyl iron particles on the thermal stability of the magnetic foams have been studied. Thermogravimetric analysis (TGA) was applied to characterize the thermal degradation process of the magnetic foams and then the apparent activation energy of degradation was calculated by using Ozawa's method [Ozawa T. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan 1965; 38: 1881-1886.]. The carbonyl iron particles were found to improve the thermal stability of magnetic foams in nitrogen by showing higher 10 wt% loss temperature, slower weight loss rate and higher apparent activation energy than pure PU foams. But the magnetic foams were observed to have slightly worse thermal stability in air than pure PU foams at the earlier degradation stage. At the later degradation stage, the magnetic foams exhibited the higher activation energy than pure PU foams in air.  相似文献   

3.
In the study walnut shells (WS) and silanized walnut shells (S_WS) were used as cellulosic fillers for novel polyurethane (PU) composite foams. The impact of 1, 2 and 5 wt% of WS and S_WS on the foaming parameters, mechanical and thermo-mechanical properties of obtained materials were evaluated. The results have shown that compared to untreated WS filler, the application of S_WS leads to PU foams with more regular structure and improved physico-mechanical behavior of PU materials. For example, compared to controlled WS_0 foam, PU foams enhanced with 1 wt% of the S_WS exhibited better mechanical properties, such as higher compressive strength (~15% of improvement), better impact strength (~6% of improvement), and improved tensile strength (~9% of improvement). The addition of S_WS improved the thermomechanical stability of PU foams. This work provides a better understanding of a relationship between the surface modification of the walnut shell filler and the mechanical, insulating and thermal properties of the PU composites. Due to these positive and beneficial effects, it can be stated that the use of WS and S_WS as natural fillers in PU composite foams can promote a new application path in converting agricultural waste into useful resources for creating a new class of green materials.  相似文献   

4.
Polyurethane foams are widely present in museum collections either as part of the artefacts, or as a material for their conservation. Unfortunately many of PU foam artefacts are in poor condition and often exhibit specific conservation issues. Their fast thermal and photochemical degradations have been the aim of previous researches. It is now accepted that hydrolysis predominates for polyester-based polyurethane PU(ES) whereas oxidation is the principal cause of degradation for polyether-based polyurethane PU(ET) variety. Only a few studies have been devoted to volatile organic compounds (VOCs) emitted by polyurethanes and, to our knowledge, none were performed on polyurethane foams by using headspace-solid phase microextraction (HS-SPME). The objective of the work described here is to assess the impact of some environmental factors (humidity, temperature and daylight) on the degradation of PU foams by evaluating their volatile fractions. We investigated morphological changes, polymerized fractions and volatile fractions of (i) one modern produced PU(ES) foam and one modern PU(ET) foam artificially aged in different conditions as well as (ii) four naturally aged foams collected from various daily life objects and selected for the representativeness of their analytical data. Characterization procedure used was based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and non-invasive headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry (HS-SPME-GC/MS). In this paper, the formation of alcohol and acid raw products for PU(ES) and glycol derivatives for PU(ET) during natural and artificial ageing is confirmed. These main products can be considered as degradation markers for PU foams. Results show that artificial and natural ageing provide similar analytical results, and confirm that the dominant degradation paths for PU(ES) and for PU(ET) are hydrolysis and photo-oxidation, respectively. Lastly, we highlight that non-invasive HS-SPME-GC/MS analysis allows to distinguish between PU(ES) and PU(ET) at any point of their degradations.  相似文献   

5.
聚氨酯/环氧树脂互穿网络(PU/EPIPN)硬泡中异氰酸根的消耗速度较纯PU硬泡高,是由于环氧树脂的固化荆同时也是异氰酸根反应的催化荆。而PU/EP IPN硬泡中环氧基的反应速度和反应程度均较纯EP网络低,归因于互穿网络对基团扩散的阻碍。在互穿网络硬泡形成过程中,存在环氧开环中所新产生的羟基与异氰酸根的反应、大分子多元醇中羟基与环氧基的反应以及异氰酸根与环氧基形成嗯唑烷酮的反应三种形成网络间的化学键的途径。同时由于PU/EPIPN硬泡高度的交联,使得IPN硬泡中两个网络具有良好的相容性。动态力学性能表明所有IPN样品都只有一个玻璃化温度。透射电镜表明IPN样品无明显的相界面。  相似文献   

6.
Metallocene‐based polyolefin (MPO) foams possess a closed‐cell structure which is in contrast to the open‐celled structure of polyurethane (PU) foams. In this study, we investigate the effects of gamma‐irradiation on the mechanical behavior of MPO foams using PU foam behavior as a basis. Compressive step‐strain experiments reveal a two‐step relaxation process in MPO foams, dominated by polymer chain relaxation at short times and gas diffusion from the closed cells at longer times. On the other hand, the relaxation in PU foams is similar to fully crosslinked polymers with the relaxation modulus reaching an equilibrium value after an initial decay. The closed‐celled structure of MPO foams lends to rapid stress relaxation and low structural recoverability upon application of compressive loads. Exposure to gamma radiation induces crosslinking in MPO foams and improves their resilience and recoverability. Stress relaxation tests reveal that nonradiated MPO foams show complete relaxation and structural loss at high temperatures. In contrast, radiated MPO foams show a significant retardation in relaxation kinetics and structural stability attributed to radiation‐induced crosslinking. Dynamic rheology and solvent‐extraction studies also support the results obtained from stress‐relaxation experiments. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1045–1056, 1999  相似文献   

7.
Rigid polyurethane (PU) foams were successfully filled with different weight ratios of melamine (1 wt%, 5 wt%, 10 wt%), silica (0.1 wt%) and ionic liquid, 1-Ethyl-3-methylimidazolium chloride, [EMIM]Cl (0.3 wt%). The aim of this study was to improve the flame retardancy of PU foams and to develop the synergistic effect between melamine, silica and ionic liquid on the flame-retardant PU foams. The influence of different loadings of the fillers was examined. The results showed that in comparison with unfilled foam, all modified compositions are characterized by higher density (41–46 kg m−3), greater compression strength (134–148 kPa), and comparable thermal conductivity (0.023–0.026 W m−1 K−1). Moreover, the reaction to fire of the PU composites has been investigated by the cone calorimeter test. The results showed that the fire resistance of PU foams containing as little as 1 wt% of melamine is significantly improved. For example, the results from the cone calorimeter test showed that the incorporation of the melamine, silica and ionic liquid significantly reduced the peak of heat release rate (pHRR) by ca. 84% compared with that of unmodified PU foam. SEM results showed that incorporated fillers can form an intumescent char layer during combustion which improves the reaction to fire of the composite foams.  相似文献   

8.
In the present work, lanthanum phenylphosphonate (LaPP)–based multilayered film was fabricated on the surface of flexible polyurethane (PU) foam by layer‐by‐layer self‐assembled method. The successful deposition of the coating was confirmed by scanning electron microscopy (SEM) and energy‐dispersive X‐ray (EDX). Subsequently, the thermal decomposition and burning behavior of untreated and treated PU foams were investigated by thermogravimetric analysis (TGA) and cone calorimeter, respectively. The TGA results indicated that Tmax2 of treated PU foams were increased by approximately 15°C to 20°C as compared with untreated PU foam. The peak heat release rate (PHRR) and total heat release (THR) of PU‐6 (with 19.5 wt% weight gain) were 188 kW/m2 and 20.3 MJ/m2, with reductions of 70% and 15% as compared with those of untreated PU foam, respectively. Meanwhile, the smoke production of treated PU foam was suppressed after the construction of LaPP‐based coating.  相似文献   

9.
Polyurethane (PU) composite foams were successfully reinforced with different concentrations (1 wt%, 2 wt%, 5 wt%) of nutmeg filler. The effect of nutmeg filler concentration on mechanical, thermal, antimicrobial and anti-aging properties of PU composite foams was investigated. PU foams were examined by rheological behavior, processing parameters, cellular structure (Scanning Electron Microscopy analysis), mechanical properties (compression test, impact test, three-point bending test, impact strength), thermal properties (Thermogravimetric Analysis), viscoelastic behavior (Dynamic Mechanical Analysis) as well as selected application properties (thermal conductivity, flammability, apparent density, dimensional stability, surface hydrophobicity, water absorption, color characteristic). In order to Disc Diffusion Method, all PU composites were tested against selected bacteria (Escherichia coli and Staphylococcus aureus). Based on the results, it can be concluded that the addition of 1 wt% of nutmeg filler leads to PU composite foams with improved compression strength (e.g. improvement by ~19%), higher flexural strength (e.g. increase of ~11%), improved impact strength (e.g. increase of ~32%) and comparable thermal conductivity (0.023–0.034 W m−1 K−1). Moreover, the incorporation of nutmeg filler has a positive effect on the fire resistance of PU materials. For example, the results from the cone calorimeter test showed that the incorporation of 5 wt% of nutmeg filler significantly reduced the peak of heat release rate (pHRR) by ca. 60% compared with that of unmodified PU foam. It has been also proved that nutmeg filler may act as a natural anti-aging compound of PU foams. The incorporation of nutmeg filler in each amount successfully improved the stabilization of PU composite foams. Based on the antibacterial results, it has been shown that the addition of nutmeg filler significantly improved the antibacterial properties of PU composite foams against both Gram-positive and Gram-negative bacteria.  相似文献   

10.
原位缩聚制备聚氨酯/碳纳米管复合泡沫材料   总被引:1,自引:0,他引:1  
采用球磨方法制备了均匀分散的碳纳米管(CNTs)/聚丙二醇分散体系,解决了碳纳米管在高黏滞聚醚醇中的分散问题,进一步以水为发泡剂,采用两步的原位缩聚法制备了碳纳米管均匀分散的聚氨酯(PU)/碳纳米管复合泡沫材料.通过FTIR、SEM、压缩实验、亲水性实验等表征了材料的结构和性能.结果表明碳纳米管的加入使聚氨酯材料的压缩强度和保水率得到显著提高.  相似文献   

11.
Flexible polyurethane (PU) nanocomposite foams were synthesized using organically modified montmorillonite clay (Cloisite 30B). The dispersion of organoclay was considered both in the isocyanate and polyol matrixes. Silicate layers of organoclay can be exfoliated in PU matrix by use of two steps mixing process. The presence of clay increased the cell density and reduced the cell size compared to the conventional PU foam. Clay dispersion was investigated by X-ray diffraction (XRD). The morphology and properties of PU nanocomposite foams were also studied. Generally, mechanical properties by addition of clay were improved. Foams in which clay was firstly dispersed in the isocyanate, showed better dispersion due to affinity of OH group on the clay surface to react with NCO groups. Better properties have been achieved with these nanofoams.  相似文献   

12.
研究了用乙烯基酯树脂(VER)直接代替通常的聚醚或聚酯型多元醇制备聚氨酯(PU)硬质泡沫塑料的可能性。实验结果表明,发泡配方中促进氨酯化反应的催化剂N,N-二甲基环己胺能与BPO复合形成室温引发体系,加速VBR的共聚合反应,影响了PU硬质泡沫塑料形成过程中的发泡与凝胶反应,导致泡了孔骨架基材的交联密度较低,泡孔结构不规整,并显示出较差的物理性能。以AIBN为引发剂时,反应初期主要进行氨酯化反应;仅  相似文献   

13.
Polyurethane (PU) foams can be used in many remediation applications as an isolation material to prevent the release of hazardous materials into the environment. The integrity of a PU foam was investigated in this study using short-term accelerated laboratory experiments including bioavailability assays, soil burial experiments, and accelerated bioreactors to determine the fate of PU foam in the soil where anaerobic processes are dominant. The experimental results have shown that the studied PU foam is likely not biodegradable under anaerobic conditions. Neither weight loss nor a change in the tensile strength of the PU material after biological exposure was observed. The FT-IR chemical signature of the PU foams was also nearly identical before and after biological exposure. The composition of the PU material (aromatic polyester and polyether PU) used in this study could have played a significant role in its resistance to microbial attack during the short-term accelerated experiments.  相似文献   

14.
Quasi-static and dynamic compressive tests are undertaken on the polyurethane (PU) foam and fumed silica reinforced polyurethane (PU/SiO2) foam experimentally. The ceramic microspheres with varying mass fractions are adopted to mix with the PU/SiO2 foam to fabricate the composite particle-reinforced foams. The effects of strain rate and particle mass fraction are discussed to identify and quantify the compressive response, energy-absorbing characteristic, and the associated mechanisms of the composite foams. The results show the initial collapse strength and plateau stress of the foams are improved significantly by reinforcing with the ceramic microsphere within 60 wt% at quasi-static compression. The rate sensitivity is observed on all the foams, but in different patterns due to the influence of ceramic microsphere. The compressive response affected by ceramic microsphere can be attributed to the particle cluster effect and stress wave propagation. Together with the deformation, the compressive characteristic experiences non-monotonic change from the low to high strain rates. The specific energy absorption (SEA) of the foam with 41 wt% ceramic microsphere show the largest magnitude at quasi-static compression. With the increasing strain rate, the ceramic reinforced foam exhibits superior energy absorption efficiency at high strain rates to that of the pure foams.  相似文献   

15.
Russian Journal of Applied Chemistry - Polyurethane (PU) insulating materials and rigid PU foams (RPUFs) are of great importance for scientific and industrial research. These materials are used for...  相似文献   

16.
Sodium salt of lignosulfonic acid (LS), which was obtained as by-product of cooking process in sulfite pulping, was solved in diethylene, triethylene or polyethylene glycol. Three series of polyurethane foams (LSPU) were synthesized by varying the LS content from 0 to 33 wt%. Apparent density (ρ) of LSPU foams ranged from 0.08 to 0.18 g cm−3 and was affected by both LS content and oxyethylene chain length. Glass transition temperatures increased with increasing amount of LS and with decreasing oxyethylene chain length. Thermal gravimetry analysis indicated that the LS component decomposes first and that the thermal stability increases with decreasing oxyethylene chain length. Compression strength and compression modulus increased linearly with increasing apparent density. It is concluded that LS is successfully utilized as a hard segment of rigid PU foams, whose thermal and mechanical properties can be tuned by changing the amount of LS and the length of soft oxyethylene chains.  相似文献   

17.
Semi-rigid polyurethane (PU) foams were prepared using lignin-molasses- poly(ethylene glycol) polyols. Two kinds of lignin, kraft lignin (KL) and sodium lignosulfonate (LS), were used. Both lignin and molasses polyols were mixed with various ratios and were reacted with poly(phenylene methylene) polyisocyanate (MDI) in the presence of silicone surfactant and di-n-butyltin dilaurate. A small amount of water was used as a foaming agent. The apparent density of PU foams increased with increasing lignin content. The compression strength and elastic modulus linearly increase with increasing apparent density, suggesting that mechanical properties are controllable by changing reaction conditions. The PU foams were amorphous and glass transition was detected by differential scanning calorimetry. The glass transition temperature (Tg ) maintained an almost constant value, regardless of the mixing ratio. This indicates that both the phenolic group of lignin and the glucopyranose ring of molasses act as rigid components in PU crosslinking network structures, and both groups contribute to the main chain motion to the same extent. By thermogravimetry (TG), it was confirmed that PU foams are thermally stable up to around 300 °C. By differential scanning calorimetry, Tg was observed at temperatures from 80 to 120 °C.  相似文献   

18.
Polyether type polyurethane foams (PU) are regular stacks of solid quasi-spherical membranes produced by the reaction of polyisocyanates with polyols of polyether nature in the presence of a catalyst and a blowing agent. Contrary to conventional membrane separations, where a solid membrane is merely a differentially separating agent, or a transport medium, PU foams, apart from separation and preconcentration, also retain, i.e., sorb the species on, or in the membranes. Therefore, PU foam membranes can be considered to act as true sorbents. The membrane properties of PU foam sorbents offer unique advantages over conventional bulk type granular sorbents in rapid, versatile and effective separations and preconcentrations of different compounds from fluid samples. Unloaded PU foam sorbents have received considerable attention in the separation of different trace inorganic species.  相似文献   

19.
Polyethylene glycol (PEG) compounds and mixtures have many properties that make them suitable for thermal applications in buildings, such as having high heat of fusion, phase change repeatability, chemical stability, non-corrosive behavior, and low-cost. In this study, we developed a number of PU rigid foams incorporated with three types of PEGs, as new insulation materials provided with an enhanced thermal capacity, and sought their suitability for various applications such as layer of floor and ceiling coverings in constructions, insulations in controlled temperature transportation packaging, inner coverings of automobile seats, etc. In order to investigate the thermal properties of PEG-containing PU foams, differential scanning calorimeter (DSC) tests were conducted first. Then, a two-layer concrete–PU foam system was designed in the laboratory conditions to examine the insulation performances via using a computer-aided thermal measurement setup which was sensitive to the simulated environmental temperature changes. The PU-PEG composites produced here can be helpful for the design of thermal insulators. PUI, including 44% PEG 600, exhibited fairly efficient thermal regulation under moderate ambient temperature conditions, whereas PUII (49% PEG 1000) is suitable for temperature control in both mild and hot surroundings. PUIII, containing 53% PEG 1500, showed suitable heat storage and thermal stability characteristics. PUIV, containing 38% PEG 600/PEG 1000/PEG 1500, also confirmed good thermal and durability characteristics. The blend of three PEGs is suitable for preventing discontinuous thermal regulation when the external temperature increases or decreases. PU foams containing PEGs can be assumed to be leak-resistant, which is promising for their industrial applications.  相似文献   

20.
单宁聚氨酯土壤微生物降解研究   总被引:2,自引:0,他引:2  
戈进杰  施兴海  吴睿  王珉  李文俊 《化学学报》2001,59(11):2018-2023
采用凝胶渗透色谱仪(GPC)、傅立叶变换红外光谱仪(FT-IR)和电子扫描显微镜(SEM)等实验手段,考察了单宁聚氨酯(WT-PU)在土壤微生物降解前后的化学结构与微观形态的变化,而作为比较用的模型化合物(TMP-PU)在同样的条件下几乎没有变化。结果表明单宁一这交联点在PU整体中以无规降解的方式优先降解,在整个降解过程中,不仅伴随着PU硬段的氢键减弱,软段的氢键也同样有相当的减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号