首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The pendant‐armed ligands L1 and L2 were synthesized by N‐alkylation of the four secondary amine groups of the macrocyclic precursor L using o‐nitrobenzylbromide (L1) and p‐nitrobenzylbromide (L2). Nitrates and perchlorates of CuII, NiII and CoII were used to synthesize the metal complexes of both ligands and the complexes were characterized by microanalysis, MS‐FAB, conductivity measurements, IR and UV‐Vis spectroscopy and magnetic studies. The crystal structures of L1, [CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN, [CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH and [NiL2](ClO4)2·3CH3CN·H2O were determined by single crystal X‐ray crystallography. These structural analysis reveal the free ligand L1, three mononuclear endomacrocyclic complexes {[CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN and [NiL2](ClO4)2·3CH3CN·H2O} and one binuclear complex {[CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH} in which one of the metals is in the macrocyclic framework and the other metal is outside the ligand cavity and coordinated to four nitrate ions.  相似文献   

2.
Crown Thioether Complexes of Lead (II), Zinc(II), and Cadmium (II). Crystal Structures of [PbL2(ClO4)2] and [ZnL2](ClO4)2 · CH3CN (L = 1,4,7 - Trithiacyclononane) The reaction of 1,4,7-trithiacyclononane (L) with the perchlorate salts of lead(II) and zinc(II) in CH3CN (2:1) affords colorless crystals of [PbL2(ClO4)2] and [ZnL2](ClO4)2 · CH3CN, respectively, The crystal structures have been determined. The PbII centre is coordinated to six sulfur atoms (the average distance Pb? S is 3.076 Å) and two oxygen atoms, one of each ClO4? anion (monodentate ClO4?). A distorted square antiprismatic polyhedron is thus generated. In [ZnL2](ClO4)2 · CH3CN the zinc(II) centre is octahedrally surrounded by six sulphur atoms (average distance Zn? S = 2.494 Å); the ClO4? anions are not coordinated. For[CdL2](ClO4)2 · H2O an analogous structure is proposed.  相似文献   

3.
Six heterothiometalic clusters, namely, [WS4Cu4(dppm)4](ClO4)2 · 2DMF · MeCN ( 1 ), [MoS4Cu4(dppm)4](NO3)2 · MeCN ( 2 ) [MoS4Cu3(dppm)3](ClO4) · 4H2O ( 3 ), [WS4Cu3(dppm)3](NO3) · 4H2O ( 4 ), [WS4Cu3(dppm)3]SCN · CH2Cl2 ( 5 ), and [WS4Cu3(dppm)3]I · CH2Cl2 ( 6 ) [dppm = bis (diphenylphosphanyl)methane] were synthesized. Compounds 1 – 4 were obtained by the reactions of (NH4)2MS4 (M = Mo, W) with [Cu22‐dppm)2(MeCN)2(ClO4)2] {or [Cu(dppm)(NO3)]2} in the presence of 1,10‐phen in mixed solvent (CH3CN/CH2Cl2/DMF for 1 and 2 , CH2Cl2/CH3OH/DMF for 3 and 4 . Compounds 5 and 6 were obtained by one‐pot reactions of (NH4)2WS4 with dppm and CuSCN (or CuI) in CH2Cl2/CH3OH. These clusters were characterized by single‐crystal X‐ray diffraction as well as IR, 1H NMR, and 31P NMR spectroscopy. Structure analysis showed that compounds 1 and 2 are “saddle‐shaped” pentanuclear cationic clusters, whereas compounds 3 – 6 are “flywheel‐shaped” tetranuclear cationic clusters. In 1 and 2 , the MS42– unit (M = W, Mo) is coordinated by four copper atoms, which are further bridged by four dppm molecules. In compounds 3 – 6 , the MS42– unit is coordinated by three copper atoms and each copper atom is bridged by three dppm ligands.  相似文献   

4.
Copper(II) complexes incorporating the isomeric tolyl-derivatised terpyridine ligands, 4′-p-tolyl-2,2′:6′,2′′-terpyridine (L1) and 6′-p-tolyl-2,2′:2′′,4′-terpyridine (L2) have been prepared and characterised by X-ray diffraction. The first of these is a co-crystal of type [Cu(L1)(NO3)2]·[Cu(L1)(NO3)(EtOH)]NO3·MeOH while the second is a single complex of type [Cu(L2)2(NO3)]NO3·0.5MeOH·1.5H2O. Crystallisation of a mixture of both products from ethanol/methanol (1:1) yields an unusual co-crystalline product of stoichiometry [Cu(L2)2NO3]2[Cu(L1)(NO3)2](NO3)2 whose structure was also confirmed by an X-ray stucture determination.  相似文献   

5.
Five novel coordination polymers, [(Cu(L1)2OH) · Cl · 3H2O] ( 1 ) [L1 = bis(N‐imidazolyl)methane], [Cd(L1)2(NCS)2] ( 2 ), [Zn(L1)2(NCS)2] ( 3 ), [Cu(L1)2(NO3)2] ( 4 ), and [Cu(L2)1.5(NCS)2] ( 5 ) [L2 = 1,4‐bis(N‐imidazolyl)butane] were obtained from self‐assembly of the corresponding metal salts with flexible ligands and their structures were fully characterized by X‐ray diffraction (XRD) analysis, Fourier Transform Infrared (FT‐IR) spectroscopy, elemental analysis and thermogravimetric (TGA) measurements. X‐ray diffraction analyses revealed that complexes 1 , 2 , 3 , and 4 exhibit 1D double‐stranded chain structures, which result from doubly bridged [CuOH], [M(NCS)2] (M = Cd, Zn), and [Cu(NO3)2] units, respectively. The polymeric copper complex 5 displays 1D ladder structure., These complexes, with the exception of complex 1 , are stable up to 300 °C.  相似文献   

6.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

7.
The pendant‐armed ligands L1 and L2 were synthesized by N‐alkylation of the two secondary aminic groups of the oxaazamacrocyclic precursor L with o‐nitrobenzylbromide (L1) or p‐nitrobenzylbromide (L2). Metal complexes of L1 and L2 have been synthesized and characterized by microanalysis, MS‐FAB, conductivity measurements, IR, UV‐Vis, 1H and 13C NMR spectroscopy and magnetic studies. Crystal structures of ligands L1 and L2, as well as complexes [CdL1(NO3)2]·2CH3CN and [Ag2Br(L2)2](ClO4)·2CH3CN have been determined by single crystal X‐ray crystallography.  相似文献   

8.
Four cyanide-bridged heterometallic complexes {[CuPb(L 1 )][Fe III (bpb)(CN) 2 ]} 2 ·(ClO 4 ) 2 ·2H 2 O·2CH 3 CN (1), {[CuPb(L 1 )] 2 [Fe II (CN) 6 ](H 2 O) 2 }·10H 2 O (2), {[Cu 2 (L 2 )][Fe III (bpb)(CN) 2 ] 2 }·2H 2 O·2CH 3 OH (3) and {[Cu 2 (L 2 )] 3 [Fe III (CN) 6 ] 2 (H 2 O) 2 }·10H 2 O (4) have been synthesized by treating K[Fe III (bpb)(CN) 2 ] [bpb 2-=1,2-bis(pyridine-2-carboxamido)benzenate] and K 3 [Fe III (CN)] 6 with dinuclear compartmental macrocyclic Schiff-base complexes [CuPb(L 1 )] (ClO 4 ) 2 or [Cu 2 (L 2 )]·(ClO 4 ) 2 , in which H 2 L 1 was derived from 2,6-diformyl-4-methyl-phenol, ethylenediamine, and diethylenetriamine in the molar ratio of 2:1:1 and H 2 L 2 from 2,6-diformyl-4-methyl-phenol and propylenediamine in the molar ratio of 1:1. Single crystal X-ray diffraction analysis reveals that compound 1 displays a cyclic hexanuclear heterotrimetallic molecular structure with alternating [FeⅢ (bpb)(CN) 2 ]- and [CuPb(L 1 )] 2+ units. Complex 2 is of a neutral dumb-bell-type pentanuclear molecular configuration consisting of one [Fe(CN)6] 4- anion sandwiched in two [CuPu(L 1 )] 2+ cations, and the pentanuclear moieties are further connected by the hydrogen bonding to give a 2D supramolecular framework. Heterobimetallic complex 3 is a tetranuclear molecule composed of a centrosymmetric [Cu 2 (L2)] 2+ segment and two terminal cyanide-containing blocks [FeⅢ (bpb)(CN)2 ]- . Octanuclear compound 4 is built from two [Fe(CN)6]3- anions sandwiched in the three [Cu 2 L 2 ] 2+ cations. Investigation of their magnetic properties reveals the overall antiferromagnetic behavior in the series of complexes except 2.  相似文献   

9.
We have reported herein the synthesis of three new Cu(II) complexes of tri- and tetradentate Schiff base ligands containing N3 or N4 donor set along with terminal NNN or SCN ligands: [L1Cu(NCS)]ClO4 (1), [L2Cu(NCS)2] (2) and [L3Cu(NNN)]ClO4 (3) [L1 = NC5H4C(CH3)=N(CH2)3N=C(CH3)C5H4N, L2= Me2N–(CH2)3–N=C(CH3)C5H4N and L3 = NC5H4CH=N–(CH2)4–N=CHC5H4N]. The complexes have been systematically characterised by elemental, spectroscopic and electrochemical techniques. Antimicrobial activities of the Schiff base ligands and their metal complexes have been studied using the disc diffusion method on the strains of Candida tropicalis and Bacillus megaterium. Structures of all the complexes have been unequivocally established from single crystal X-ray diffraction analyses that show the monomeric units containing a five-coordinated copper center in highly distorted square pyramidal geometry with thiocyanate or azide anion coordinated as terminal ligand. The complexes 1 and 3 crystallise in monoclinic (P21/c) and 2 in triclinic (P-1) space group, respectively.  相似文献   

10.
Three coordination polymers of Robson-type macrocycles, {[Cu4L1(4,4′-bipy)2]·4ClO4·H2O} (1), {[Cu4L2(4,4′-bipy)4]·2CH3CN·4ClO4·2H2O} (2), and {[Zn2L2(4,4′-bipy)2]·(ClO4)2} (3) (where H2L1 and H2L2 are the [2?+?2] condensation products of 1,3-diaminopropane with 2,6-diformyl-4-methylphenol and 2,6-diformyl-4-fluorophenol, respectively), have been synthesized and characterized. Magnetic susceptibility was measured for 1 and 2 from 2 to 300?K. The optimized magnetic data were J?=?–368.5?cm?1, J′?=?40.5?cm?1 with R?=?1.69?×?10?6 for 1 and J?=?–291.22?cm?1, J′?=?83.74?cm?1, ρ = 0.00168 with R?=?1.8?×?10?11 for 2, respectively. The data reveal strong antiferromagnetic interactions between two Cu(II) ions in the macrocyclic unit and ferromagnetic interaction between the Cu(II) ions in two adjacent macrocyclic units for 1 and 2.  相似文献   

11.
Synthesis, Vibrational Spectra, and Crystal Structures of the Nitrato Argentates (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN and (Ph4P)[Ag2(NO3)3] Tetraphenylphosphonium bromide reacts in acetonitril suspension with excess silver nitrate to give (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN ( 1 ), whereas (Ph4P)[Ag2(NO3)3] ( 2 ) is obtained in a long‐time reaction from (Ph4P)Br and excess AgNO3 in dichloromethane suspension. Both complexes were characterized by vibrational spectroscopy (IR, Raman) and by single crystal structure determinations. 1 : Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1781.5(3), b = 724.8(1), c = 2224.2(3) pm, β = 96.83(1)°, R1 = 0.0348. 1 contains isolated complex units [Ag(NO3)2(CH3CN)]?, in which the silver atom is coordinated by the chelating nitrate groups and by the nitrogen atom of the solvated CH3CN molecule with a short Ag—N distance of 220.7(4) pm. 2 : Space group I2, Z = 4, lattice dimensions at 193 K: a = 1753.4(4), b = 701.7(1), c = 2105.5(4) pm, R1 = 0.072. In the polymeric anions [Ag2(NO3)3]? each silver atom is coordinated in a chelating manner by one nitrate group and by two oxygen atoms of two bridging nitrate ions. In addition, each silver atom forms a weak π‐bonding contact with a phenyl group of the (Ph4P)+ ions with shortest Ag···C separations of 266 and 299 pm, respectively, indicating a (4+1) coordination of silver atoms.  相似文献   

12.
Reaction of equimolar amounts of AgClO4 and bis[4-(2-pyridylmethyleneamino)phenyl] methane (L1) or bis[4-(2-pyridylmethyleneamino)phenyl] ether (L2) in a 1:1 solvent mixture of CH3CN and CH2Cl2 leads to the formation of two infinite coordination polymers of the composition {[Ag(L1)]ClO4·CH3CN}n (1) and {[Ag(L2)]ClO4·CH2Cl2}n (2). Whereas 1 represents a homochiral single-stranded helicate the related complex 2 shows a typical zigzag chain arrangement. Both structures are characterized by a distorted tetrahedral coordination environment of the Ag(I) centres each based on a N4 coordination pattern of two ligand molecules. The resulting strands are connected by a hydrogen bonding network including ClO4 ? anions and solvent molecules forming 2-D layers. Additional ?ШC?? and CH?C?? interactions between the aromatic parts of the ligand molecules give a 3-D arrangement of the packing. In contrast, a discrete dinuclear metallocycle, [Ag2(L2)2](ClO4)2·CH3OH (3), has been formed by reaction of AgClO4 with L2 when CH2Cl2 in the solvent mixture was replaced by CH3OH. Again each Ag(I) has a distorted tetrahedral geometry and is coordinated to two pyridylimine units of two ligand molecules. Additional weak hydrogen bonds involving perchlorate and solvent molecules as well as edge-to-face and face-to-face ?ШC?? interactions allow a 3-D packing arrangement.  相似文献   

13.
Two new dinuclear macrocyclic complexes, [Ni2L1(OAc)]·ClO4 (1) and [Co2L2(OAc)]·1.5(ClO4)·0.5Na·2(CH3OH) (2) (where H2L1 and H2L2 are the condensation products of N,N-bis(3-aminopropyl)-4-methoxybenzylamine with 2,6-diformyl-4-brominephenol and 2,6-diformyl-4-methylphenol in the presence of metal ions, respectively) have been synthesized and characterized by infrared spectra, elemental analysis, electrospray mass spectra, and X-ray single crystal diffraction. The interactions of the complexes with CT-DNA have been measured by UV-absorption titrations and fluorescence quenching experiments.  相似文献   

14.
A cation–anion metal string complex with neutral axial ligands, [Ni3(dpa)4(CH3CN)2] · (ClO4)2 · (CH3CN) · H2O (1) where dpa? is 2,2′-dipyridylamine anion, was synthesized and characterized by elemental analysis, IR, fluorescence, UV, and CV spectroscopic methods, and single crystal X-ray analysis. The Ni–Ni distances in 1 are longer than those in [Ni3(dpa)4(CH3CN)2] · (PF6)2 · 3.14CH3CN (2) and [Ni3(dpa)4F2] · [Ni3(dpa)4(H2O)2] · (BF4)2 · 2CH3OH, indicating that the counter anions affect the Ni–Ni distances of trinickel string complexes. Compared with Ni3(dpa)4Cl2 and Ni3(dpa)4(ClO4)2, 1 also has different fluorescence, UV, and CV properties. Therefore, this study clearly indicates that ligands and counter anions largely influence the structures and properties of trinickel string complexes.  相似文献   

15.
A dinuclear copper(Ⅱ) complex[Cu2(TATP)2(L-Leu)2(CIO4)2]2·2H2Owas synthesized and characterized, where, TATP=1,4,8,9-tetraazatriphenylene, and L-Leu=L-leucinate. The complex was crystallized in the triclinic space group P1, with two independent molecules in a unit cell. Two Cu(Ⅱ) ions in each complex [Cu2(TATP)2(L-Leu)2(CIO4)2] molecule were found to be in different coordination geometries, i.e., Cu2 or Cu4 of a distorted square-pyramidal geometry coordinated with two nitrogens of TATP, the amino nitrogen and one carboxylate oxygen of L-Leu and one oxygen of perchlorate, and Cul or Cu3 with an octahedral geometry coordinated with the above stated similar coordinated atoms, and another carboxylate oxygen of L-Leu coordinating to Cu2 or Cu4. The complex can interact with CT-DNA by an intercalative mode and cleave pBR322 DNA in the presence of ascorbate.  相似文献   

16.
The N‐functionalized macrocyclic ligand 2,13‐bis(1‐naphthalenylmethyl)‐5,16‐dimethyl‐2,6,13,17‐tetraazatricyclo(14,4,01.18,07.12)docosane (L3) and its copper(II) complex were prepared. The crystal structure of [Cu(L3)](ClO4)2·2CH3CN was determined by single‐crystal X‐ray diffraction at 150 K. The copper atom, which lies on an inversion centre, has a square planar arrangement and the complex adopts a stable trans‐III configuration. The longer distance [2.081(2) Å] for Cu–N(tertiary) compared to 2.030(3) Å for Cu–N(secondary) may be due to the steric effect of the attached naphthalenylmethyl group on the tertiary nitrogen atom. Two perchlorate ions are weakly attached to copper in axial sites and are further connected to the ligand of the cation through NH ··· O hydrogen bonds [N ··· O 3.098 Å]. IR and UV/Vis spectroscopic properties are also described.  相似文献   

17.
The reaction of CuCl2·2H2O with 3,5-diisopropylpyrazole (PziPr2H) in the presence of sodium parafluorobenzoate (Na-p-FBz) resulted in the formation of an oxo-chloro-bridged tetranuclear complex [Cu4(PziPr2H)4(μ-O)(μ-Cl)6] 1, whereas the reaction of Cu(NO3)2·3H2O with PziPr2H in the presence of different benzoates gave [Cu(PziPr2H)2(μ-OCH3)]2(NO3)2 2, [Cu(PziPr2H)3(NO3)(p-ClBz)]·CH3CN 3, [Cu(p-CH3Bz)2(PziPr2H)]2·2CH3CN 4, [Cu(p-OCH3Bz)2(CH3CN)]2·4CH3CN 5 and [Cu(p-CNBz)(CH3CN)]2 6. Single-crystal X-ray diffraction studies confirmed these formulations. DNA binding studies for these complexes were performed by means of UV-visible absorption titration and viscosity measurements. Gel electrophoresis studies showed that hydroxyl radicals are involved in DNA cleavage in the presence of the complexes.  相似文献   

18.
Rare homodinuclear Co (II) complex [Co2(L)NO3] ( 1 ) and helical centrosymmetric homotetranuclear Cu (II) complex [Cu4(L)2(H2O)2]·2ClO4 ( 2 ), have been synthesized by a newly explored bis (salamo)-like tetraoxime ligand (H3L) with Co (NO3)2·6H2O and Cu (ClO4)2·6H2O, respectively, and characterized by elemental analyses, IR, UV–Vis spectroscopy and single crystal X-ray crystallography. X-ray crystallographic studies indicate that the two Co (II) atoms (Co1 and Co2) in complex 1 have different N2O4 and N2O3 coordination spheres, and distorted octahedral (Co1) and slightly distorted triangular bipyramidal (Co2) geometries, while Cu (II) atoms in complex 2 have also two different N2O4 (Cu1) and N2O3 (Cu2) coordination environments, and complex 2 forms a helical centrosymmetric molecule. In addition, supramolecular interactions, Hirshfeld surfaces analyses, antibacterial and fluorescence properties were also investigated in detail.  相似文献   

19.
A novel Cu(II) complex [Cu2L2(NO3)2] with 2-hydroxy-1-naphthaldehyde-(4’hydroxy)phenylacetyl hydrazone (C19H14N2O2·H2O, HL) was synthesized. The structure of [Cu2L2(NO3)2] was characterized by X-ray single-crystal diffraction and can be described as a distorted rectangular pyramid with binuclear coordination. IR, UV–vis and EPR spectra are used to discuss the structure of Cu(II) complex in different conditions. Magnetic properties were determined by EPR spectra and magnetic susceptibility studies, showing magnetic exchange interaction and weak antiferromagnetic exchange between two Cu(II) ions. The apparent activation energy (Ea) of thermal decomposition of compounds indicated that the thermal stability of [Cu2L2(NO3)2] is better than HL. The CT-DNA binding behavior of compounds was determined by UV–vis absorption and viscosity measurements and the results confirmed an intercalative binding mode with CT-DNA. Kb obtained was 6.24(±0.12) × 106 M?1 and 3.09(±0.006) × 106 M?1 for [Cu2L2(NO3)2] and HL, respectively, revealing that the binding ability of [Cu2L2(NO3)2] with CT-DNA was stronger. The thermogenic curves of compounds interacting with CT-DNA were monitored by microcalorimetry, showing they were all endothermic reactions with reaction within 27–42 min; interaction enthalpies (ΔH) of [Cu2L2(NO3)2] and HL were 30.3 and 4.31 kJ mol?1. Binding studies with BSA were evaluated by fluorescence spectroscopy and the same relative interactions were found comparing with the above CT-DNA experiments.  相似文献   

20.
Two hexa-coordinate copper(II) complexes formulated as [Cu(phen)(4-dmampy)2(ClO4)2] and [Cu(bpy)(3-ampy)2(ClO4)2] · 0.5CH3OH · 0.5H2O (phen = 1,10–phenanthroline bpy = 2,2′-bipyridine, 3-ampy = 3-aminopyridine, 4-dmampy = 4-dimethylaminopyridine), and one low-spin ferrous complex formulated as [Fe(dmbpy)3](ClO4)2 · H2O (dmbpy = 4,4′-dimethyl-2,2′-bipyridine), were synthesized by in situ ligand substitution at room temperature, and characterized by X-ray single-crystal diffraction. This is the first structural report where either 4-dmampy and phen molecules, or 3-ampy and bpy molecules, are located simultaneously around one metal center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号