首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A visible‐light photocatalyst containing Ag2Se and reduced graphene oxide (RGO) was synthesized by a facile sonochemical‐assisted hydrothermal method. X‐ray diffraction, scanning electron mi‐croscopy w...  相似文献   

2.
A visible-light photocatalyst containing Ag2Se and reduced graphene oxide(RGO) was synthesized by a facile sonochemical-assisted hydrothermal method. X-ray diffraction, scanning electron mi-croscopy with energy-dispersive X-ray analysis, and ultraviolet-visible diffuse reflectance spectros-copy results indicated that the RGO-Ag2Se nanocomposite contained small crystalline Ag2Se nano-particles dispersed over graphene nanosheets and absorbed visible light. The high crystallinity of the nanoparticles increased photocatalytic activity by facilitating charge transport. N2 adsorp-tion-desorption measurements revealed that the RGO-Ag2Se nanocomposite contained numerous pores with an average diameter of 9 nm, which should allow reactant molecules to readily access the Ag2Se nanoparticles. The RGO-Ag2Se nanocomposite exhibited higher photocatalytic activity than bulk Ag2Se nanoparticles to degrade organic pollutant rhodamine B and industrial dye Texbrite BA-L under visible-light irradiation(λ 420 nm). The generation of reactive oxygen spe-cies in RGO-Ag2Se was evaluated through its ability to oxidize 1,5-diphenylcarbazide to 1,5-diphenylcarbazone. The small size of the Ag2Se nanoparticles in RGO-Ag2Se was related to the use of ultrasonication during their formation, revealing that this approach is attractive to form po-rous RGO-Ag2Se materials with high photocatalytic activity under visible light.  相似文献   

3.
This study shows a facile approach for the preparation of CeO2 nanoparticles decorated with porous nitrogen‐doped graphene (NG) nanosheets for effective photocatalytic degradation of methylene blue (MB). NG nanosheets were first synthesized using a hydrothermal method and then nitrogen‐doped graphene‐cerium oxide (NG‐CeO2) was prepared through mixing of cerium nitrate with different concentrations of NG under ultrasonication followed by hydrothermal treatment. The synthesized nanocomposites were characterized using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE‐SEM). The photocatalytic activity of the synthesized nanocomposites was analyzed against MB dye. Results showed that the nanocomposites of NG‐CeO2 have an average particle size of 20 nm. The as‐prepared NG‐CeO2 nanocomposites exhibited outstanding photocatalytic activity for dye degradation under visible light irradiation, which could be attributed to synergistic effects between the NG nanosheets and CeO2. The quantum of photodegradation increases with the increase of the NG content in the nanocomposites.  相似文献   

4.
采用水热法制备铜/石墨烯(Cu/RGO)复合材料,通过XRD、FTIR、SEM和TEM对材料的结构和形貌进行表征,并考察了复合材料在H2O2辅助作用下对次甲基蓝(MB)的催化作用。结果表明,该复合材料中石墨烯所负载的铜颗粒尺寸较小且分布均一,对MB的催化效果良好,0.18 g·L-1复合催化剂在300 min内对MB的脱色效果可达90.7%,经过5次循环仍有88.0%以上。  相似文献   

5.
采用水热法制备铜/石墨烯(Cu/RGO)复合材料,通过XRD、FTIR、SEM和TEM对材料的结构和形貌进行表征,并考察了复合材料在H_2O_2辅助作用下对次甲基蓝(MB)的催化作用。结果表明,该复合材料中石墨烯所负载的铜颗粒尺寸较小且分布均一,对MB的催化效果良好,0.18 g·L~(-1)复合催化剂在300 min内对MB的脱色效果可达90.7%,经过5次循环仍有88.0%以上。  相似文献   

6.
Graphene oxide (GO) and silver nanoparticles (Ag NPs) sequentially decorated nitrogen‐doped titania nanotube array (N‐TiO2 NTA) had been designed as visible‐light‐driven self‐cleaning surface‐enhanced Raman scattering (SERS) substrate for a recyclable SERS detection application. N‐TiO2 NTA was fabricated by anodic oxidation and then doping nitrogen treatment in ammonia atmosphere, acting as a visible‐light‐driven photocatalyst and supporting substrate. Ag/GO/N‐TiO2 NTA was prepared by decorating GO monolayer through an impregnation process and then depositing Ag NPs through a polyol process on the surface of N‐TiO2 NTA, acting as the collection of organic molecule and Raman enhancement. The SERS activity of Ag/GO/N‐TiO2 NTA was evaluated using methyl blue as an organic probe molecule, revealing the analytical enhancement factor of 4.54 × 104. Ag/GO/N‐TiO2 NTA was applied as active SERS substrate to determine a low‐affinity organic pollutant of bisphenol A, revealing the detection limit of as low as 5 × 10?7 m . Ag/GO/N‐TiO2 NTA could also achieve self‐cleaning function for a recycling utilization through visible‐light‐driven photocatalytic degradation of the adsorbed organic molecules. Ag/GO/N‐TiO2 NTA has been successfully reused for five times without an obvious decay in accuracy and sensitivity for organic molecule detection. The unique properties of this SERS substrate enable it to have a promising application for the sensitive and recyclable SERS detection of low‐affinity organic molecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
以氨丙基三乙氧基硅烷和草酰氯为原料,合成得到链上含亚氨基和羰基官能团的硅氧倍半聚合物。以此聚合物为载体,通过配位吸附和还原得到银纳米粒子(平均粒径约为15 nm)高度分散于硅氧烷聚合物表面的复合物。研究结果表明,复合物中银负载量(质量分数)约为13.66%,在水溶液中25℃、6 min内可将对硝基苯酚(4-NP)完全催化还原为对氨基苯酚(4-AP),且7次循环使用后依然保持95%以上的催化活性。在常温常压条件下,催化剂的最高活性达到33.0 g4-AP·gAg-1,表现出优异的催化还原性能。  相似文献   

8.
The present study investigates the green synthesis of stable silver nanoparticles using Juniperus communis leaf aqueous extract at room temperature. Synthesized silver nanoparticles (AgNPs) were characterized with different techniques such as UV–vis spectroscopy, Fourier transforms infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM-EDAX) and electrochemical method. Photocatalytic and anti-bacterial activities of synthesized AgNPs are evaluated based on the obtained result showed an efficient inhibition growth for gram negative P. Aeruginosa, E. Coli, and gram positive bacteria S.aureus. The AgNPs exhibited an excellent photocatalytic activity toward the degradation of methylene blue both indoor and outdoor, under sunlight, an efficiency of 95% was achieved. As an easy and environmentally friendly process, AgNPs based on Juniperus communis leaf extract could be applied for the degradation of pollutants and wastewater treatment.  相似文献   

9.
Materials having both magnetic and catalytic properties have shown great potential for practical applications. Here, a reduced graphene oxide/iron oxide/silver nanohybrid (rGO/Fe3O4/Ag NH) ternary material was prepared by green synthesis of Ag on pre‐synthesized rGO/Fe3O4. The as‐prepared rGO/Fe3O4/Ag NH was characterized using Fourier transform infrared spectroscopy, X‐ray diffractometry, Raman spectroscopy, vibrating sample magnetometry, transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. rGO sheets were covered with Fe3O4 (8–16 nm) and Ag (18–40 nm) nanoparticles at high densities. The mass percentages were 13.47% (rGO), 62.52% (Fe3O4) and 24.01% (Ag). rGO/Fe3O4/Ag NH exhibited superparamagnetic behavior with high saturated magnetization (29 emu g−1 at 12 kOe), and efficiently catalyzed the reduction of 4‐nitrophenol (4‐NP) with a rate constant of 0.37 min−1, comparable to those of Ag‐based nanocatalysts. The half‐life of 4‐NP in the presence of rGO/Fe3O4/Ag NH was ca 1.86 min. rGO/Fe3O4/Ag NH could be magnetically collected and reused, and retained a high conversion efficiency of 94.4% after the fourth cycle. rGO/Fe3O4/Ag NH could potentially be used as a magnetically recoverable catalyst in the reduction of 4‐NP and environmental remediation.  相似文献   

10.
FeMoO4 nanorods and their rare earth (Eu3+ and Tb3+) doped composites with nitrogen doped graphene (NG) were synthesized by facile hydrothermal method in aqueous medium. X-ray diffraction (XRD) analysis of the as-synthesized samples was done to study the phase purity and crystalline nature. FTIR and Raman Spectroscopy have been studied for investigating the bonding in nanostructures. The surface morphology of the samples was investigated with field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The photolumniscent nature of the samples was investigated by the using the fluorescence spectrophotometer. The photocatalytic degradation efficiency of the prepared pure FeMoO4 and its rare earth doped composites with nitrogen doped graphene was evaluated as function of visible light irradiation versus concentration of methylene blue (MB dye). The prepared nanocomposites show enhanced photocatalytic efficiency as compared to the bare FeMoO4 nanorods.  相似文献   

11.
Mn‐doped SrMoO4 nanocrystals were synthesized by thermal decomposition of metal–organic salt in an organic solvent with the doping content in the range 0–12 mol%. The structures, morphologies and optical properties were characterized using various techniques. The results suggest that Mo sites in the SrMoO4 lattice are substituted by the Mn dopant, the adsorption bands are found to be shifted toward the visible light region and the band gap becomes narrower correspondingly. The photocatalytic performance of the as‐synthesized product was determined using the degradation of methylene blue by visible light irradiation. The photocatalytic performance is enhanced with Mn doping, and the optimal degradation rate is 85% in 140 min for 5 mol% Mn doping. The enhanced photocatalytic activity with Mn doping may be ascribed to the energy band adjustment and effective photogenerated electron–hole separation caused by the Mn doping. A possible photocatalytic mechanism is also discussed.  相似文献   

12.
The possibility of photochemical synthesis of ZnO/Ag nanoheterostructures by the action of visible light absorbed by methylene blue as sensitizer was established. It was shown that sensitization of the ZnO nanoparticles results from electron transfer from the singlet-excited molecules of the dye to the conduction band of the ZnO nanoparticles. A scheme for the mechanism of the photoprocesses that occur is proposed.__________Translated from Teoreticheskaya i Éksperimentalnaya Khimiya, Vol. 41, No. 1, pp. 12–16, January–February, 2005.  相似文献   

13.
Graphene oxide has received extensive attention because of its unique properties and potential applications. In this study, magnetic nitrogen‐doped graphene was prepared by one‐step hydrothermal reaction using urea as the dopant and reductant, and ferroferric oxide nanoparticles were in situ deposited on the surface of the nanohybrids. The magnetic nitrogen‐doped graphene was characterized using various physical and chemical methods. It was used as a new adsorbent for the magnetic solid‐phase extraction of four nonsteroidal anti‐inflammatory drugs from the river water. The parameters influencing the extraction efficiency were optimized in detail. Under optimal conditions, this method provided a wide linear range (5–200 ng/mL). The limits of detection were in the range of 1.07–5.10 ng/mL. The recoveries varied from 81.2 to 121.5% with relative standard deviations of less than 10.8%. Overall, we can conclude that the proposed method offers an efficient pretreatment and enrichment and can be successfully applied for the extraction and determination of nonsteroidal anti‐inflammatory drugs in complex matrices.  相似文献   

14.
Density functional theory (including van der Waals correction with the PBE‐D functional) is applied to the study of 4‐chlorophenol (4‐CP) adsorption on graphene oxide (GO), A‐doped graphene (A = N, B), and pristine graphene and test their possible application for 4‐CP removal. Results show that on GO adsorption is improved by the hydrogen bond interactions between the adsorbents and 4‐CP, suggesting that functionalized graphene is a preferable alternative than pristine graphene for 4‐CP removal. In addition, the stability of hydrogen bonds is confirmed by molecular dynamics calculations using the PM6 potential. Without hydrogen bonds, A‐doped graphene models show a comparable performance for 4‐CP removal than pristine graphene. Finally, even in a solvent medium, 4‐CP adsorption is strong. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The development of efficient and selective aerobic oxidation of alkylarenes to form more functional compounds by heterogeneously catalysed routes still presents a great challenge in the fine chemical industry and is a major research topic. In this work, gold nanoparticles supported on three‐dimensional nitrogen‐doped graphene‐based frameworks (Au NPs@3D‐(N)GFs) were successfully synthesized and found to have an impressive performance as bifunctional catalysts (nitrogen dopant as base and gold nanoparticles as active site) in the controlled oxidation of alkylarenes. The catalyst was found to be a simple bench top, stable, recyclable and selective catalytic system for the aerobic oxidation of various types of alkylarenes into their corresponding ketones at room temperature under environmentally friendly conditions with good yields and high selectivity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In the present work, CuO nanoparticles grown on three‐dimensional nitrogen‐doped graphene‐based frameworks (CuO@3D‐(N)GFs) were synthesized using a two‐step method. After the synthesis of three‐dimensional nitrogen‐doped graphene, CuO nanoparticles were deposited on it, by adding cupric acetate followed by thermal treatment. Different analysis methods were used to characterize the products. The as‐prepared nanocomposite was used as a promising catalyst for thermal decomposition of ammonium perchlorate (AP) as one of the most common oxidizer in composite propellants. Differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA) techniques were used to investigate the thermal decomposition of ammonium perchlorate. According to the DSC/TGA, high temperature decomposition of AP decreased to 111 °C in the presence of 4% CuO@3D‐(N)GFs and the total heat release (ΔH) from decomposition of AP increased to 1893 J g?1 which is much more than 590 J g?1 for pure AP.  相似文献   

17.
One-pot green approach to the synthesis of Prussian blue nanocubes/reduced graphene oxide (PBNCs/RGO) nanocomposite had been attempted. It was based on the extract of mushroom with K3[Fe(CN)6] and graphene oxide (GO) as precursors, where the reduction of GO and the deposition of PBNCs occurred simultaneously. The obtained nanocomposite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and electrochemical techniques. With the introduction of β-cyclodextrin (β-CD), the β-CD/PBNCs/RGO system showed linear behavior in the range from 0.01 to 700 μM for 4-nitrophenol with a low detection limit of 2.34 nM (S/N = 3).  相似文献   

18.
The bismuth tungstate / reduced graphene oxide (Bi2 WO6 / rGO) composite material was synthesized by a simple and one-step hydrothermal method, and the nitrogen dioxide gas sensor was prepared based on this material. The crystal phase, morphology and microstructure of composite were studied by XRD, Raman spectra, SEM and TEM,respectively, which confirmed that composite of Bi2 WO6 and rGO was successfully synthesized, and Bi2 WO6 / rGO composite material with flower-like superstructure was obtained. The composite material was loaded on the interdigital electrode to prepare the nitrogen dioxide gas sensor, while the properties of gas sensor were systemically investigated by using homemade gas-sensing test device. The results indicated that the Bi2 WO6 / rGO composite gas sensor had higher selectivity, higher response value and better long-term stability. The response value of Bi2 WO6 / rGO composite gas sensor was 28. 35% towards 47. 03 mg / m3 NO2, which was 3. 5 times of pure rGO gas sensor. The response time was 55 s with the recovery time of 549 s and the detection limit of 62 μg / m3. © 2022, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

19.
In this study, a reduced graphene oxide (rGO)@sodium lignosulfonate (NaLS) composite material was fabtricated using a one-step method and then mixed with natural polysaccharide calcium alginate (CaAlg) to prepare the rGO@NaLS/CaAlg pervaporation membrane. The appearance and physical properties of the rGO@NaLS/CaAlg membrane were characterized by scanning electron microscopy and water contact angle. The swelling performance of the membrane and its dehydration performance to organic solvents were evaluated. The results indicate that the addition of rGO@NaLS can increase the hydrophilicity of the rGO@NaLS/CaAlg membrane and reduce its degree of swelling in the ethanol solution. The membrane incorporated with 6 wt% rGO@NaLS exhibits the best pervaporation performance, and ethanol can be purified to 99.8%.  相似文献   

20.
Designed nitrogen and sulfur co‐doped graphene wrapped magnetic core‐shell supported Pd nanoparticles were synthesized through the following steps. Firstly, Fe3O4 was prepared, coated with silica and then functionalized with amine groups to create a positive charge on the structure for enhancing the interaction of the Fe3O4@SiO2 with graphene oxide. Secondary, the pre‐catalyst wrapped with graphene to enhance adsorption of aromatic substrates through π–π stacking. Thirdly, graphene was doped with nitrogen and sulfur to increase the grafting of Pd in hybrid. Finally, Pd NPs were attached on the surface of pre‐engineered structure to produce Fe3O4@SiO2@N,S‐wG@Pd which exhibited high performance in Suzuki reactions. This superior activity can be indexed to the incorporation of N and S atoms into graphene led to high anchoring and well‐dispersion of Pd NPs on the nanocomposite surface offering large amounts of active centers, that strongly increased the interaction between Pd and substrates to decreases Pd leaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号