首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Co(II), Cu(II), Y(III), Zr(IV), La(III), and U(VI) complexes derived from 2-(2-hydroxybenzylidinemine)-benzoic acid (L) ligand were synthesized. The mode of bonding of L and the structure of its metal complexes were investigated using different analytical and spectral tools (FT-IR, UV–Vis, 1H NMR, mass, and XRD). The ligand chelated with the metal ions as a neutral bidentate through oxygen and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry with characteristic color for metal ions. The results of magnetic moment measurements supported paramagnetic for some complexes (Co(II) and Cu(II)) and diamagnetic phenomena for the other complexes. The thermal decomposition of the ligand along with its metal complexes was explained. The molar conductance values of all complexes in (DMF) were found in the range 154.50 to 250.20 S cm2 mol−1 at room temperature. The activation thermodynamic parameters, such as E*, ΔH*, ΔS* and ΔG*, were calculated from the DTG curves using Coats–Redfern (CR) and Horowitz–Metzeger (HM) methods at n = 1 or n ≠ 1. The nematicidal activity of the synthesized L and their metal complexes was screened.  相似文献   

2.
The synthesis and characterization of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pd(II) and UO2(II) chelates of 1-(2-thiazolylazo)-2-naphthalenol (TAN) were reported. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 degrees C and 0.1 M ionic strength. The solid complexes were characterized by elemental and thermal analyses, molar conductance, IR, magnetic and diffuse reflectance spectra. The complexes were found to have the formulae [M(L)2] for M = Mn(II), Co(II), Ni(II), Zn(II) and Cd(II); [M(L)X].nH2O for M = Cu(II) (X = AcO, n = 3), Pd(II) (X = Cl, n = 0) and UO2(II) (X = NO3, n = 0), and [Fe(L)Cl2(H2O)].2H2O. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the ligand is coordinated to the metal ions in a terdentate manner with ONN donor sites of the naphthyl OH, azo N and thiazole N. An octahedral structure is proposed for Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II) and UO2(II) complexes and a square planar structure for Cu(II) and Pd(II) complexes. The thermal behaviour of these chelates shows that water molecules (coordinated and hydrated) and anions are removed in two successive steps followed immediately by decomposition of the ligand molecule in the subsequent steps. The relative thermal stability of the chelates is evaluated. The final decomposition products are found to be the corresponding metal oxides. The thermodynamic activation parameters, such as E*, delta H*, delta S* and delta G* are calculated from the TG curves.  相似文献   

3.
The complexes of alloxan with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) Cd(II), Hg(II), Ti(IV) and Zr(II) have been isolated and characterized on the basis of elemental analysis, molar conductivity, spectral studies (mid infrared, 1H-NMR and UV/vis spectra), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The thermal decomposition of the metal complexes was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The kinetic thermodynamic parameters, E*, ΔH*, ΔS* and ΔG*, were calculated using Coats and Redfern and Horowitz and Metzger equations. The ligand and its complexes have been studied for possible biological activity including antibacterial and antifungal activity.  相似文献   

4.
Schiff base (L) ligand is prepared via condensation of pyridine-2,6-dicarboxaldehyde with -2-aminopyridine. The ligand and its metal complexes are characterized based on elemental analysis, mass, IR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). The molar conductance reveals that all the metal chelates are non-electrolytes. IR spectra shows that L ligand behaves as neutral tridentate ligand and bind to the metal ions via the two azomethine N and pyridine N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II), Ni(II), Cu(II), and Th(IV)) and tetrahedral (Mn(II), Cd(II), Zn(II), and UO2(II)). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also was screened for its antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data shows that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

5.
The synthesis and characterization of Mn (II), Fe (II), Co (II), Ni (II), Cu (II) and Zn (II) complexes with 3-(bromoacetyl)coumarin (BAC) in presence of 1,10-phenanthroline (Phen) were reported and described by elemental analysis, molar conductivity, FT-IR, UV–Vis and effective magnetic moments. TG and DTG have been applied to study the decomposition mechanisms for BAC, Phen and their complexes. The analytical results and spectral studies showed that BAC and Phen act as bidentate ligands via oxygen of α, β-unsaturated ketone and oxygen of lactone carbonyl of coumarin and two pyridyl nitrogen atoms of Phen. Octahedral geometries have been proposed for all complexes and the kinetic parameter (E*, ΔH*, ΔS* and ΔG*) were calculated using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. DFT calculations (bond lengths, bond angles, total energy, heat of formation, dipole moment and the lowest energy model structures) have been determined. The antibacterial activities for synthesized complexes were assayed against some selected bacterial and the complexes displayed a very highly significant against L. monocytogens.  相似文献   

6.
Diffuse reflectance spectroscopy has been used for the study of the sorption of malonate and glycolate complexes of uranium(VI) and iron(III), present simultaneously in solution, onto the solid phase of fiber materials filled with an AB-17 anion exchanger. In the form of malonate complexes uranium(VI) is determined in 0.5 M HCl on substrate discs with immobilized Arsenazo III, while iron(III) is determined on substrate discs with potassium thiocyanate in 0.5 M HCl. The dependence of the analytical signals on the concentrations of U(VI) and Fe(III) is linear in the ranges 0.02–0.16 μg/mL; the detection limit is 0.01 μg/mL. The possibility of analysis of U(VI) and Fe(III) mixtures in ratio from 1: 5 to 5: 1 in the presence of 2-fold concentrations of Zr(IV), Th(IV), and Ti(IV), 5-fold concentrations of Bi(III), 10-fold concentrations of Cu(II), 20-fold concentrations of La(III), 100-fold concentrations of Ni(II) and Zn(II), and 200-fold concentrations of Co(II) and Ca(II) has been demonstrated. Standard color scales in the concentration range from 0.02 to 0.2 μg/mL have been used for the visual determination of uranium(VI) and iron(III).  相似文献   

7.
Capelin BC  Ingram G 《Talanta》1970,17(3):187-195
The tetracyanoplatinate(II) (TCP) ion forms insoluble fluorescent compounds with many metal ions. This property has not hitherto been exploited for analytical use. The soluble sodium TCP salt has been applied as a reagent for metal ion detection. Fluorescent precipitates useful for detection of the metal ions were obtained with Y(III), Zr(IV), Ag(I), Zn(II), Cd(II), Hg(I), Hg(II), A1(III), Pb(II), La(III) and Th(IV). Limits of detection ranged from 5 to 200 ppm. With ammonium acetate as a masking agent, selective detection of 10 ppm of silver was achieved in the presence of the other metal ions. As little as 20 ppm of zirconium can be detected in the presence of hafnium, which yields a non-fluorescent precipitate.  相似文献   

8.
The hexadentate, pendant arm macrocycle 1,4,7-tris(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane (H(3)L) has been synthesized and isolated as its trihydrochloride, H(3)L.3HCl, or sodium salt, Na(3)L, and its coordination chemistry with first-row transition metals has been studied. Mononuclear complexes of the type [LM(III)] (M = Ga (1), In (2), V (3), Cr (4), Mn (5), Fe,Co (6)) have been isolated as have the one-electron-oxidized forms [LM]PF(6) (M = V(IV) (3a), Mn(IV) (5a)). The crystal structure of 6 has been determined by single-crystal X-ray crystallography. Complex 6 crystallizes in the orthorhombic space group Iba2, with cell constants a = 14.206(8) ?, b = 22.53(1) ?, c = 26.07(1) ?, V = 8344.0(3) ?(3), and Z = 8. The cobalt(III) ion is in a distorted octahedral fac-N(3)S(3) donor set. The reaction of L with divalent metal chlorides in a 1:2 ratio in methanol affords the homodinuclear complexes [LM(II)(2)Cl] (M = Mn (7), Co (8), Ni (9), Zn (10), Cd (11)) where one metal is six- (N(3)MS(3)) and the other is four-coordinate (S(3)MCl); the two polyhedra are linked by three &mgr;(2)-thiolato bridges. Heterodinuclear complexes of the type [LM(1)M(2)Cl] have been obtained from [LM(2)Cl] species by abstraction of the four-coordinate metal ion and replacement by a different metal ion. The complexes [LZn(II)M(II)Cl] (M = Fe (12), Co (13), Ni (14)), [LNi(II)M(II)Cl] (M = Co (15), Zn (16)), and [LMn(II)M(II)Cl] (M = Fe (17), Co (18), Ni (19), Zn (20), Cd (21), Hg (22)) have been isolated as solid materials. The crystal structure of 14 has been determined by X-ray crystallography. Complex 14 crystallizes in the orthorhombic space group P2(1)2(1)2(1), with cell constants a = 15.45(1) ?, b = 17.77(1) ?, c = 17.58(1) ?, V = 4826.5(4) ?(3), and Z = 4. The linkage isomers 14 and 16 show characteristic electronic spectra for octahedrally and tetrahedrally coordinated Ni(II), respectively. The electronic structures of new complexes have been investigated by UV-vis spectroscopy; their magnetochemistry and electrochemistry are reported.  相似文献   

9.
Mononuclear mixed ligand complexes of Ni(II) and Ce(III) with 4-(-3-methoxy-4-hydroxybenzylideneamino)-1,3-dimethyl-2,6-pyrimidine-dione, 2-aminopyridine and 8-hydroxyquinoline have been prepared. The elemental analysis, molar conductance, spectral (IR, mass and solid reflectance), magnetic moment measurements and thermal study were utilized to investigate the coordination behavior. All metal complexes have metal-to-ligand ratios of 1:1:1 and the modes of bonding are consistent with N- and O-donation suggesting monomeric octahedral and square planar structures. The thermal behavior of these complexes was investigated and the thermal decomposition pathways postulated. The activation thermodynamic parameters, E*, ΔH*, ΔS* and ΔG* for the different thermal decomposition steps of the complexes were calculated using the Coats-Redfern equation. Antibacterial and antifungal properties of the metal complexes have also been examined against Staphylococcus aureus (ATCC 25923), Streptococcus pyogenes (ATCC 19615), Pseudomonas fluorescens (S 97), Pseudomonas phaseolicola (GSPB 2828), Fusarium oxysporum and Aspergillus fumigatus. The highest antimicrobial activity was observed for the Ce(III) complex, [CeL(8-Oqu)(NO3)2]·1½H2O.  相似文献   

10.
Stability constants for Al(III), Cd(II), Co(II), Cu(II), Fe(III), Hg(II), La(III), Nd(III), Er(III), Mg(II). Mn(II), Ni(II), Pb(II), Th(IV) and Zn(II) complexes of triethylenetetraminehexaacetic acid (TTHA) have been evaluated from data obtained by pH and pM measurements. The pM method based on measurements with the mercury electrode and the redox system Fe(III)/Fe(II) proved to be very useful when binuclear complexes are formed.  相似文献   

11.
Metal complexes derived from 2,6-pyridinedicarboxaldehydebis(p-hydroxyphenylimine); L1, 2,6-pyridinedicarboxaldehydebis (o-hydroxyphenylimine); L2, are reported and characterized based on elemental analyses, IR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The complexes are found to have the formulae [MX2(L1 or L2)] x nH2O, where M=Fe(II), Co(II), Ni(II), Cu(II) and Zn(II), X=Cl in case of Fe(II), Co(II), Ni(II), Cu(II) complexes and Br in case of Zn(II) complexes and n=0-2.5. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the Schiff bases are coordinated to the metal ions in a terdentate manner with NNN donor sites of the pyridine-N and two azomethine-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are trigonal bipyramidal (in case of Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (in case of Fe(II) complexes). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the coordinated water, anions and ligands (L1 and L2) in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the TG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent organic ligands against one or more bacterial species.  相似文献   

12.
Mercaptotropone was synthesized from tropone, and its acid dissociation constant (Ka) and distribution coefficient (KD) between benze and aqueous solution were spectrophotometrically determined as 5.75 (pKa) and 2.46 (log KD); Extraction behaviour of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cr(III), Fe(III), Y(III), and Zr(IV) with this reagent into benzene was examined. Cu(II) and Fe(III) were completely extracted from acidic solution, Mn(II), Co(II), Ni(II), Zn(II), Pb(II), and Zr(IV) were also extracted from intermediate pH region, a part of Cr(III) was extracted, but Y(III) was not extracted.  相似文献   

13.
Metal complexes with the general formula [ML(H2O)(CH3OH)x]·nH2O·(CH3OH)y(NO3)z [M=Cu(II), Ni(II), Co(II), VO(IV), Cr(III), Cd(II), Zn(II) or UO2(VI); x=0-2; y=0,1; z=0,1; n=0-2, 6 and L=hydrazone (H2L) derived from condensation of thiosemicarbazide with 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione. The synthesized ligand and its metal complexes have been characterized on the basis of elemental analyses, spectral and magnetic studies as well as thermal gravimetric analysis (TGA). The deprotonated ligand acts as a dibasic tridentate (ONS) via phenolate oxygen, azomethine (CN), and thiolate (C-S) groups. Copper(II) complex exhibits square planar geometry. Nickel(II), chromium(III) and dioxouranium(VI) complexes exhibit octahedral geometry. Cobalt(II), cadmium(II) and zinc(II) complexes showed tetrahedral geometry, whereas oxovanadium(IV) reveals square pyramidal geometry. Thermal analysis are investigated and showed either three or four thermal decomposition steps. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The molecular parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data such as IR and TGA results.  相似文献   

14.
A spectrophotometric method has been developed for the determination of Molybdenum (VI) using 3-hydroxy-2-(2'-thienyl)-4H-chromen-4-one as a complexing agent. The complex formed was dissolved in water in the presence of Triton X-100 and exhibits an absorption maximum at 410 nm. A large number of metal ions like Co(II), Ni(II), Mn(II), Cr(III), Zn(II), Cu(II), Hg(II), Bi(III), Fe(II), Fe(III), Zr(IV), V(V) can be tolerated at an appreciable concentrations. Molar absorptivity and Sandell's sensitivity of the method is 2.80 x 10(5) l mol-1cm-1 and 3.42 x 10(-4) micrograms cm-2, respectively. Beer's law is obeyed in the concentration range of 0.01-0.4 ppm Mo(VI). Aliquots containing 0.2 ppm of Mo(VI) give a mean absorbance of 0.56 with a relative standard deviation of 1.3%.  相似文献   

15.
    
Zusammenfassung Es wird die Optimierung der Extraktion von Metallkationen [Sc(III), Cr(III), Mn(II), Fe(III), Co(II), Cu(II), Zn(II), Y(III), Ag(I), Cd(II), La(III), Ce(III), Eu(III), Yb(III), Hg(II), Pb(II), Th(IV), U(IV, VI) und Am(III)] in Form gemischter Komplexe mit Hexafluoracetylaceton und neutralen Donatoren mit Stickstoffatomen bzw. P = O-Gruppen beschrieben. Über thermische und gaschromatographische Eigenschaften der extrahierten flüchtigen Verbindungen wird berichtet. Optimale Ergebnisse wurden mit Tri-n-butylphosphinoxid als Donator erzielt.
Volatile hexafluoroacetylacetonates for the isolation and gas-chromatographic determination of trace metals
Summary The optimization of the extraction of metal cations [Sc(III), Cr(III), Mn(II), Fe(III), Co(II), Cu(II), Zn(II), Y(III), Ag(I), Cd(II), La(III), Ce(III), Eu(III), Yb(III), Hg(II), Pb(II), Th(IV), U(IV, VI) and Am(III)] in the form of mixed-ligand complexes with hexafluoroacetylacetone and neutral donators with nitrogen atoms or P = O-groups is described. The thermal and gas-chromatographic characteristics of the extracted volatile compounds are reported. Optimal results were achieved using tri-n-butylphosphine oxide as donator.
  相似文献   

16.
Koshima H  Onishi H 《Talanta》1986,33(5):391-395
Adsorption of microgram amounts of 20 metal species on activated carbon powder from aqueous solutions of pH 1-13 was investigated. The species examined were Cs(I), Y(III), Ce(III), Ti(IV), Zr(IV), Cr(III), Cr(VI), Mn(II), Fe(III), Co(II), Ni(II), Ru(III), Cu(II), Ag(I), Zn(II), Cd(II), Al(III), Pb(II), Sb(III) and Bi(III).  相似文献   

17.
New metal complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with salicylidine-2-aminobenzimidazole (SABI) are synthesized and their physicochemical properties are investigated using elemental and thermal analyses, IR, conductometric, solid reflectance and magnetic susceptibility measurements. The base reacts with these metal ions to give 1:1 (Metal:SABI) complexes; in cases of Fe(III), Co(II), Cu(II), Zn(II) and Cd(II) ions; and 1:2 (Metal:SABI) complexes; in case of Ni(II) ion. The conductance data reveal that Fe(III) complex is 2:1 electrolyte, Co(II) is 1:2 electrolyte, Cu(II), Zn(II) and Cd(II) complexes are 1:1 electrolytes while Ni(II) is non-electrolyte. IR spectra showed that the ligand is coordinated to the metal ions in a terdentate mannar with O, N, N donor sites of the phenloic -OH, azomethine -N and benzimidazole -N3. Magnetic and solid reflectance spectra are used to infer the coordinating capacity of the ligand and the geometrical structure of these complexes. The thermal decomposition of the complexes is studied and indicates that not only the coordinated and/or crystallization water is lost but also that the decomposition of the ligand from the complexes is necessary to interpret the successive mass loss. Different thermodynamic activation parameters are also reported, using Coats-Redfern method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The non-symmetric imide ligand Hpypzca (N-(2-pyrazylcarbonyl)-2-pyridinecarboxamide) has been deliberately synthesised and used to produce nine first row transition metal complexes: [M(II)(pypzca)(2)], M = Zn, Cu, Ni, Co, Fe; [M(III)(pypzca)(2)]Y, M = Co and Y = BF(4), M = Fe and Y = ClO(4); [Cu(II)(pypzca)(H(2)O)(2)]BF(4), [Mn(II)(pypzca)(Cl)(2)]HNEt(3). These are the first deliberately prepared complexes of a non-symmetric imide ligand. X-ray crystal structures of [Cu(II)(pypzca)(2)]·H(2)O, [Co(II)(pypzca)(2)], [Co(III)(pypzca)(2)]BF(4), [Cu(II)(pypzca)(H(2)O)(2)]BF(4)·H(2)O and [Mn(II)(pypzca)Cl(2)]HNEt(3) show that each of the (pypzca)(-) ligands binds in a meridional fashion via the N(3) donors. In the first three complexes, two such ligands are bound such that the 'spare' pyrazine nitrogen atoms are positioned approximately orthogonally to one another and also to the imide oxygen atoms. In MeCN the [M(II/III)(pypzca)(2)](0/+) complexes, where M = Ni, Co or Fe, exhibit one reversible metal based M(II/III) process and two distinct, quasi-reversible ligand based reduction processes, the latter also observed for M(II) = Zn. [Mn(II)(pypzca)Cl(2)]HNEt(3) displays a quasi-reversible oxidation process in MeCN, along with several irreversible processes. Both copper(II) complexes show only irreversible processes. Variable temperature magnetic measurements show that [Fe(III)(pypzca)(2)]ClO(4) undergoes a gradual spin crossover from partially high spin at 298 K (3.00 BM) to fully low spin at 2 K (1.96 BM), and that [Co(II)(pypzca)(2)] remains high spin from 298 to 4 K. All of the complexes are weakly coloured, other than [Fe(II)(pypzca)(2)] which is dark purple and absorbs strongly in the visible region.  相似文献   

19.
Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.  相似文献   

20.
Mn(II), Au(III) and Zr(III) complexes with N-benzoylglycine (hippuric acid) (abbreviation hipH) were synthesized and characterized by elemental analysis, molar conductivity, magnetic measurements, spectral methods (mid-infrared, (1)H NMR, mass, X-ray powder diffraction and UV/vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. The molar conductance measurements proved that all hippuric acid complexes are non-electrolytes. The electronic spectra and magnetic susceptibility measurements were used to infer the structures. The IR spectra of the ligand and its complexes are used to identify the type of bonding. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* are estimated from the DTG curves. The free ligand and its complexes have been studied for their possible biological antifungal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号