首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular design to improve catalyst performance is significant but challenging. In enzymes, residue groups that are close to reaction centers play critical roles in regulating activities. Using this bioinspired strategy, three water‐soluble polymers were designed with appending Co porphyrins and different side‐chain groups to mimic enzyme reaction centers and activity‐controlling residue groups, respectively. With these polymers, high hydrogen evolution efficiency was achieved in neutral aqueous media for electro‐ (turnover frequency >2.3×104 s?1) and photocatalysis (turnover number >2.7×104). Porphyrin units are surrounded and protected by polymer chains, and more importantly, the activity can be tuned with different side‐chain groups. Therefore, instead of revising molecular structures that is difficult from both design and synthesis points of view, polymers can be used to improve molecular solubility and stability and simultaneously regulate activity by using side‐chain groups.  相似文献   

2.
Conjugated polymers, comprising fully π‐conjugated systems, present a new generation of heterogeneous photocatalysts for solar‐energy utilization. They have three key features, namely robustness, nontoxicity, and visible‐light activity, for photocatalytic processes, thus making them appealing candidates for scale‐up. Presented in this Minireview, is a brief summary on the recent development of various promising polymer photocatalysts for hydrogen evolution from aqueous solutions, including linear polymers, planarized polymers, triazine/heptazine polymers, and other related organic conjugated semiconductors, with a particular focus on the rational manipulation in the composition, architectures, and optical and electronic properties that are relevant to photophysical and photochemical properties. Some future trends and prospects for organic conjugated photocatalysts in artificial photosynthesis, by water splitting, are also envisaged.  相似文献   

3.
A nickel(II) porphyrin Ni‐P (P=porphyrin) bearing four meso‐C6F5 groups to improve solubility and activity was used to explore different hydrogen‐evolution‐reaction (HER) mechanisms. Doubly reduced Ni‐P ([ Ni‐P ]2?) was involved in H2 production from acetic acid, whereas a singly reduced species ([ Ni‐P ]?) initiated HER with stronger trifluoroacetic acid (TFA). High activity and stability of Ni‐P were observed in catalysis, with a remarkable ic/ip value of 77 with TFA at a scan rate of 100 mV s?1 and 20 °C. Electrochemical, stopped‐flow, and theoretical studies indicated that a hydride species [H‐ Ni‐P ] is formed by oxidative protonation of [ Ni‐P ]?. Subsequent rapid bimetallic homolysis to give H2 and Ni‐P is probably involved in the catalytic cycle. HER cycling through this one‐electron‐reduction and homolysis mechanism has been proposed previously but rarely validated. The present results could thus have broad implications for the design of new exquisite cycles for H2 generation.  相似文献   

4.
The synthesis of hybrid platinum materials is fundamental to enable alkaline water electrolysis for cost-effective H2 generation. In this work, we have used a galvanostatic method to co-deposit PtNi films onto polycrystalline gold. The surface concentrations of Ni (ΓNi) and Pt (ΓPt) were calculated from electrochemical measurements; the ΓPtNi ratio and electrocatalytic activity of these materials towards hydrogen evolution reaction (HER) in 1 M KOH show a strong dependence on the current density pulse applied during the electrodeposition. Analysis of the Tafel parameters hints that, on these deposits, HER proceeds through a Volmer-Heyrovsky mechanism. The galvanostatically deposited PtNi layers present a high current output per Pt gram, 3199 A gPt−1, which is significantly larger compared to other PtNi-based materials obtained by more extended and more complex synthesis methods.  相似文献   

5.
6.
电催化析氢反应作为一种绿色、可持续的制备氢气方法,受到了广泛关注. 近年来,非贵金属析氢催化剂以其低成本和相对高的催化活性取得了较快的研究进展,其中,钼基纳米催化剂目前已成为电催化析氢中最受关注的研究热点之一. 本文综述了钼基碳化物、磷化物、氮化物以及硫化物在电催化析氢反应中的催化机理和研究进展,分析了提高析氢催化活性的方法,并对钼基非贵金属催化剂的发展趋势进行了展望.  相似文献   

7.
Much has been done to search for highly efficient and inexpensive electrocatalysts for the hydrogen evolution reaction (HER), which is critical to a range of electrochemical and photoelectrochemical processes. A new, high‐temperature solution‐phase method for the synthesis of ultrathin WS2 nanoflakes is now reported. The resulting product possesses monolayer thickness with dimensions in the nanometer range and abundant edges. These favorable structural features render the WS2 nanoflakes highly active and durable catalysts for the HER in acids. The catalyst exhibits a small HER overpotential of approximately 100 mV and a Tafel slope of 48 mV/decade. These ultrathin WS2 nanoflakes represent an attractive alternative to the precious platinum benchmark catalyst and rival MoS2 materials that have recently been heavily scrutinized for the electrocatalytic HER.  相似文献   

8.
泡沫镍载碳化钨催化剂上的析氢反应   总被引:1,自引:0,他引:1  
吴梅  魏子栋  沈培康 《催化学报》2007,28(4):307-311
结合直接化学还原法和交替微波法制备了泡沫Ni载Ni-WC催化剂,用X射线衍射、扫描电镜和透射电镜对催化剂进行了表征,研究了其析氢电催化性能.结果表明,在相同条件下,泡沫Ni载Ni-WC催化剂的析氢起始电位与泡沫Ni相比降低了60 mV左右.电解质浓度和温度对泡沫Ni载Ni-WC催化剂的析氢电催化活性有很大影响.  相似文献   

9.
The binding and stabilizing effect of arginine residues in certain aldolases served as inspiring source for the development of a family of amino acylguanidine organocatalysts. Screening and optimization led to identify the threonine derivative as the most suitable catalyst for the asymmetric aldol addition of hydroxyacetone, affording the syn diastereomer in high ee. In contrast, the proline derivative yielded the anti diasteromer. MMFF models suggest the presence of an extensive hydrogen bonding network between the acylguanidinium group and the reaction intermediates.  相似文献   

10.
11.
Bandgap engineering in donor–acceptor conjugated microporous polymers (CMPs) is a potential way to increase the solar-energy harvesting towards photochemical water splitting. Here, the design and synthesis of a series of donor–acceptor CMPs [tetraphenylethylene (TPE) and 9-fluorenone (F) as the donor and the acceptor, respectively], F0.1CMP , F0.5CMP , and F2.0CMP , are reported. These CMPs exhibited tunable bandgaps and photocatalytic hydrogen evolution from water. The donor–acceptor CMPs exhibited also intramolecular charge-transfer (ICT) absorption in the visible region (λmax=480 nm) and their bandgap was finely tuned from 2.8 to 2.1 eV by increasing the 9-fluorenone content. Interestingly, they also showed emissions in the 540–580 nm range assisted by the energy transfer from the other TPE segments (not involved in charge-transfer interactions), as evidenced from fluorescence lifetime decay analysis. By increasing the 9-fluorenone content the emission color of the polymer was also tuned from green to red. Photocatalytic activities of the donor–acceptor CMPs ( F0.1CMP , F0.5CMP , and F2.0CMP ) are greatly enhanced compared to the 9-fluorenone free polymer ( F0.0CMP ), which is essentially due to improved visible-light absorption and low bandgap of donor–acceptor CMPs. Among all the polymers F0.5CMP with an optimum bandgap (2.3 eV) showed the highest H2 evolution under visible-light irradiation. Moreover, all polymers showed excellent dispersibility in organic solvents and easy coated on the solid substrates.  相似文献   

12.
The essence of developing a Pt-based single-atom catalyst (SAC) for hydrogen evolution reaction (HER) is the preparation of well-defined and stable single Pt sites with desired electrocatalytic efficacy. Herein, we report a facile approach to generate uniformly dispersed Pt sites with outstanding HER performance via a photochemical reduction method using polyvinylpyrrolidone (PVP) molecules as the key additive to significantly simplify the synthesis and enhance the catalytic performance. The as-prepared catalyst displays remarkable kinetic activities (20 times higher current density than the commercially available Pt/C) with excellent stability (76.3 % of its initial activity after 5000 cycles) for HER. EXAFS measurements and DFT calculations demonstrate a synergetic effect, where the PVP ligands and the support together modulate the electronic structure of the Pt atoms, which optimize the hydrogen adsorption energy, resulting in a considerably improved HER activity.  相似文献   

13.
Despite being technically possible, splitting water to generate hydrogen is still practically unfeasible due mainly to the lack of sustainable and efficient catalysts for the half reactions involved. Herein we report the synthesis of cobalt‐embedded nitrogen‐rich carbon nanotubes (NRCNTs) that 1) can efficiently electrocatalyze the hydrogen evolution reaction (HER) with activities close to that of Pt and 2) function well under acidic, neutral or basic media alike, allowing them to be coupled with the best available oxygen‐evolving catalysts—which also play crucial roles in the overall water‐splitting reaction. The materials are synthesized by a simple, easily scalable synthetic route involving thermal treatment of Co2+‐embedded graphitic carbon nitride derived from inexpensive starting materials (dicyandiamide and CoCl2). The materials’ efficient catalytic activity is mainly attributed to their nitrogen dopants and concomitant structural defects.  相似文献   

14.
Understanding the role of elastic strain in modifying catalytic reaction rates is crucial for catalyst design, but experimentally, this effect is often coupled with a ligand effect. To isolate the strain effect, we have investigated the influence of externally applied elastic strain on the catalytic activity of metal films in the hydrogen evolution reaction (HER). We show that elastic strain tunes the catalytic activity in a controlled and predictable way. Both theory and experiment show strain controls reactivity in a controlled manner consistent with the qualitative predictions of the HER volcano plot and the d‐band theory: Ni and Pt's activities were accelerated by compression, while Cu's activity was accelerated by tension. By isolating the elastic strain effect from the ligand effect, this study provides a greater insight into the role of elastic strain in controlling electrocatalytic activity.  相似文献   

15.
Conjugated materials can, in many cases, absorb visible light because of their delocalized π electron system. Such materials have been widely used as a photoactive layers in organic photovoltaic devices and as photosensitizers in dye-sensitized solar cells. Additionally, these materials have been reported for applications in solar fuel production, working as photocatalysts for the hydrogen evolution reaction (HER). The synthesis of three flexible vinyl groups-containing chromophores is reported. The catalytic activity towards hydrogen evolution of these chromophores has been investigated and compared to their non-vinyl-containing analogues. The catalytic effect was confirmed using two different approaches: electrochemical, using the chromophores to modify a working electrode, and photocatalytic, using the chromophores combined with platinum nanoparticles. A relationship between the degree of conjugation and the catalytic activity of the chromophores has been observed with the electrochemical method, while a relationship between the UV absorption in the solid state and the photocatalytic effect with platinum nanoparticles was observed.  相似文献   

16.
采用简便的一步水热合成法,在泡沫镍上原位生长微量W~(6+)掺入的Fe_(0.2)Ni(OH)_2双金属层状氢氧化物(LDH),以此来降低铁镍材料的过电势。通过场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和拉曼光谱(Raman)等分析方法对材料形貌、组成、结构等进行表征,发现钨掺杂使催化剂材料的晶体结构和电子结构发生变化,W_(0.03)Fe_(0.2)Ni(OH)_2LDH表现出优异的电化学析氧(OER)和析氢(HER)性能。电化学测试表明该催化剂在25 mA·cm~(-2)电流密度下OER和HER过电势分别仅有271和208 mV,塔菲尔斜率分别为61和181 mV·dec~(-1)。此外,经过长达20 h计时电位稳定性测试后,材料的催化性能未见明显下降。  相似文献   

17.
Three isomeric A2B-type new cobalt triaryl corroles bearing hydroxyphenyl substituents have been prepared and well characterized. Their activity and stability in the electrocatalytic hydrogen evolution reaction (HER) have been investigated. The results showed that the hydroxyl position of the phenyl group had significant influence on electrocatalytic HER. The ortho-hydroxyphenyl substituted cobalt corrole ( 1 ) core displays the best HER activity using TsOH proton source, and the turnover frequency (TOF) and catalytic efficiency (C.E) reach 318.68 s−1 and 1.13, respectively. Moreover, a turnover number (TON) of 1447.39 and Faraday efficiency (FE) of 98.7 % have been observed in aqueous medium. The catalytic pathway is via EECEC, EECC or ECEC pathways depending on the acidity of acid proton source (E: electron transfer step, C: chemical step, in this case protonation). The catalytic HER performance of these cobalt corroles follows an order of o-hydroxyl > p-hydroxyl > m-hydroxyl isomer, showing the o- and p-hydroxyl of the phenyl groups are more efficient in accelerating proton relay.  相似文献   

18.
Nanoparticles of cobalt phosphide, CoP, have been prepared and evaluated as electrocatalysts for the hydrogen evolution reaction (HER) under strongly acidic conditions (0.50 M H2SO4, pH 0.3). Uniform, multi‐faceted CoP nanoparticles were synthesized by reacting Co nanoparticles with trioctylphosphine. Electrodes comprised of CoP nanoparticles on a Ti support (2 mg cm?2 mass loading) produced a cathodic current density of 20 mA cm?2 at an overpotential of ?85 mV. The CoP/Ti electrodes were stable over 24 h of sustained hydrogen production in 0.50 M H2SO4. The activity was essentially unchanged after 400 cyclic voltammetric sweeps, suggesting long‐term viability under operating conditions. CoP is therefore amongst the most active, acid‐stable, earth‐abundant HER electrocatalysts reported to date.  相似文献   

19.
任艳梅  王家骏  王平 《化学进展》2021,33(8):1270-1279
电解水与一次可再生能源耦合,可同时提供洁净制氢方式与先进的能源转化技术,有望在未来清洁能源经济中扮演重要角色,而实现这一美好愿景的关键在于研发高活性、低成本的析氢/析氧电催化材料。二硫化钼(MoS2)是颇具代表性的非贵金属析氢电催化材料,纵观其研究历程,先导性理论预测与材料设计、先进制备与表征技术的应用均在改性研究中发挥了至关重要的作用,这也从一个侧面折射出当代电催化剂的研究模式与发展趋势。本文按照重要发现与进展的时间顺序,梳理了MoS2析氢电催化剂的发展历程,重点论述了增多边缘活性位、提高导电性、构筑基面活性位等改性策略的实施方法、效果与机理,最后从全领域总结了MoS2析氢电催化剂的研究启示并展望其未来发展趋势。  相似文献   

20.
采用水热法对天然铝土矿进行改性,获得高比表面积的铝土矿(bauxite)载体.用等体积浸渍法制备了Ru含量为1.0%-4.0%(质量分数,下同)的Ru/bauxite催化剂和Ru含量为2.0%的Ru/Al2O3催化剂,以水煤气变换反应为探针反应,考察了催化剂性能.利用X射线荧光元素分析(XRF)、X射线粉末衍射(XRD)、低温N2物理吸附、H2程序升温还原(H2-TPR)以及CO程序升温脱附(CO-TPD)等对载体和催化剂样品进行表征.结果表明,不同Ru含量的Ru/bauxite催化剂具有优异的水煤气变换制氢性能,优于Ru/Al2O3催化剂.其原因是铝土矿本身含有的Fe2O3与负载的Ru之间发生了相互作用,降低了Fe2O3还原温度,提高了对CO的吸附能力且降低了CO的脱附温度,进而提高了催化剂的水煤气变换反应性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号