首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Newly designed hetero-dinuclear 3d–4f complex [Cu(L)La (NO3)2(μ-NO3)(H2O)]·EtOH ( 1 ), hetero-tetranuclear 3d–4f complex [Cu(L)Ce (NO3)2(μ-NO3)(OAc)2]2·MeOH ( 2 ) and hetero-multinuclear 3d–4f complexes [{Cu(L)Ln (NO3)3}2][Cu(L)Ln (NO3)3]2 (Ln = Pr ( 3 ) and Nd = ( 4 )) have been self-assembled from the reaction of Cu (OAc)2·H2O, Ln (NO3)3·6H2O (Ln = La, Ce, Pr and Nd) with an unsymmetric salamo-like bisoxime ligand H2L (6-Methoxy-6′-ethoxy-2,2′-[ethylenedioxybis (nitrilomethylidyne)]diphenol) based on a Schiff base condensation of 2-[O-(1-ethoxyamide)]oxime-6-methoxyphenol and 3-ethoxysalicylaldehyde. The structures of complexes 1 – 4 were characterized by elemental analyses, PXRD analyses, IR, UV–Vis spectra, and single-crystal X-ray analyses. In addition, the supramolecular interactions and fluorescence properties of complexes 1 – 4 are discussed in detail. Moreover, the antioxidant activities of the complexes 1 – 4 were determined by superoxide radical-scavenging method in vitro, which indicates that the complexes 1 – 4 all show potential antioxidant properties.  相似文献   

2.
Four mononuclear copper(II) and zinc(II) complexes were synthesized by the reaction of copper and zinc salts with 3,4-dichlorophenylactic acid, 2-bromophenylactic acid, biphenylacetic acid (O-donor ligand) and bipyridine (N-donor ligands) having the general formulae [(L)2Cu(bp)(H2O)] ( 1 ), [(BpA)2Cu(bp)] ( 2 ), [(L)2Zn(bp)(H2O)] ( 3 ) and [(L*)2Zn(bp)] ( 4 ) (L = 3,4-dichlorophenylacetate, L* = 2-bromophenylacetate bp = bipyridine, and BpA = biphenylacetate). Structures of all compounds were characterized through FT-IR spectroscopy and X-ray diffraction analysis. FT-IR spectra of all complexes confirmed the binding mode of Cu-O and Zn-O. XRD data revealed that complexes 1 – 3 exhibited distorted octahedral arrangement, whereas complex 4 has a distorted tetrahedral environment. Micellization behavior was examined with anionic surfactant (SDS) by conductance measurement as well as absorption spectral analysis. DNA binding study was assessed through viscosity measurement and UV/Vis spectrophotometry. DPPH free radical scavenging assay was measured by UV/Vis spectrophotometry. The results showed nice biological potential of all the complexes.  相似文献   

3.
ILHAN  Salih TEMEL  Hamdi KILIC  Ahmet 《中国化学》2007,25(10):1547-1550
Six new macrocyclic complexes were synthesized by a template reaction of 1,4-bis(2-formylphenoxy)butane with diamines and Cu(NO3)2·3H2O and their structures were proposed on the basis of elemental analysis, FT-IR, UV-Vis, magnetic susceptibility measurements, molar conductivity measurements and mass spectra. The metal to ligand molar ratios of the Cu(Ⅱ) complexes were found to be 1 : 1. The Cu(Ⅱ) complexes are 1 : 2 electrolytes as shown by their molar conductivities (∧m) in DMF at 10^-3 mol·L^-1. Due to the existence of free ions the Cu(Ⅱ) complexes are electrically conductive. Their configurations were proposed to be probably distorted octahedral.  相似文献   

4.
Two new mononuclear copper (II) complexes [Cu(L)(H2O)Cl] (1) and [Cu(L)(H2O)(SCN)] (2) (HL = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol) have been synthesized and characterized in order to investigate their binding interaction with arsenate ions. Complexes 1 and 2 were synthesized by performing reaction of CuCl2·2H2O or CuCl2·2H2O/NH4SCN, respectively, with HL using Et3N as mild base in MeOH solution at room temperature, and characterized by employing a number of analytical techniques, for example, elemental analysis, molar electrical conductivity, FTIR, UV–Vis and mass spectrometry. Their structures, optimized at DFT/B3LYP/6-311G level, show that the copper atom in 1 and 2 exhibits a distorted square pyramidal geometry. In H2O/MeOH (3:1; v/v) solution, complexes 1 and 2 were examined for their binding affinity towards arsenate ions. The UV–Vis spectroscopic results specify that the arsenate group binds with 1 and 2 in 1:1 M ratio. The UV–Vis titration data were successfully utilized to calculate the binding constants of arsenate-bound Cu(II) complexes, and the values are found to be 1.723 × 104 M?1 and 2.161 × 104 M?1, corresponding to 1/AsO43? and 2/AsO43? assemblies, respectively.  相似文献   

5.
Three new metal complexes [Cu(L)2] (1), [Co(L)2] (2) and [Zn(L)2] (3) have been prepared by the reaction of hydrated salts of metal (II) acetate with new Schiff base ligand HL, [2‐((4‐(dimethylamino)phenylimino)methyl)‐4,6‐di‐t‐butylphenol] and characterized by different physico‐chemical analyses such as elemental analysis, single XRD, 1H NMR, FTIR and UV–Vis spectroscopic techniques. Their biomolecular docking, antimicrobial and cytotoxicity studies have also been demonstrated. The proposed structure of Schiff base ligand HL and complex 2 are confirmed by Single crystal X‐ray crystallography study. This analysis revealed that metal (II) complexes remain in distorted tetrahedral coordination environments. The electronic properties such as HOMO and LUMO energies are carried out by gaseous phase DFT/B3LYP calculations using Gaussian 09 program. Complex 1 showed a good binding propensity to the DNA and HSA, during the assessment of docking studies. Schiff base ligand HL and its metal (II) complexes, 1–3 screened for their in vitro antimicrobial activities using the disc diffusion method against selected microbes. Complex 1 shows higher antimicrobial activity than complexes 2, 3 and Schiff base ligand HL. According to the results obtained from the cytotoxic studies, Schiff base ligand HL and its metal (II) complexes 1–3 have better cytotoxicity against MCF‐7 cell lines with potency higher than the currently used chemotherapeutic agent cyclophosphamide.  相似文献   

6.
A series of strongly phosphorescent copper(I) halide complexes, namely [Cu(μ-X)POP]2 (X = Cl (1), Br (2), I (3), Br0.5Cl0.5 (4), POP = bis[2-(diphenylphosphino)phenyl]ether), have been synthesized by reacting CuX with the diphosphine ligand in 1:1 molar ratio. All complexes were characterized by spectroscopic analysis (IR, UV–Vis), elemental analysis, and photoluminescence study. Single-crystal X-ray diffraction revealed that complex 2 is a dinuclear structure which is constructed by two μ-X bridges and two POP ligands as μ2 bridges. Other complexes were determined as isologues of complex 2 by powder X-ray diffraction and elemental analysis. All complexes exhibit intense blue-green phosphorescence with a lifetime of ~1 μs in the solid state. The halogen-mixed complex presents a lightly change in the luminescence comparing to that of parent complexes. The excited states of all complexes have been assigned as halide-to-ligand charge transfer state mixed metal-to-ligand charge transfer character based on the time-dependent density functional theory calculations. All complexes are thermally stable according to thermogravimetric analysis so that they are suitable for applying in luminescent devices.  相似文献   

7.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from indole-3-carboxaldehyde and m-aminobenzoic acid were synthesized and characterized by elemental analysis, molar conductance, IR, UV–Vis, magnetic moment, powder XRD and SEM. The IR results demonstrate the bidentate binding mode of the ligand involving azomethine nitrogen and carboxylato oxygen atoms. The electronic spectral and magnetic moment results indicate that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex is square planar. Powder XRD and SEM indicate the crystalline state and surface morphology studies of the complexes. The antimicrobial activity of the synthesized ligand and its complexes were screened by disc diffusion method. The results show that the metal complexes were found to be more active than the ligand. The nuclease activity of the ligand and its complexes were assayed on CT DNA using gel electrophoresis in the presence of H2O2. The Cu(II) complex showed increased nuclease activity in the presence of an oxidant when compared to the ligand and other complexes.  相似文献   

8.
The new ligand bis(4‐pyridylthio)methane (4‐bpytm) ( 1 ) and its complexes [CuX2(4‐bpytm)] and [CuX2(4‐bpytm)2] (X = Cl and Br) ( 2 – 5 ) have been prepared and characterized by elemental analysis, IR‐Raman, UV/Vis spectroscopy. The structures of (4‐bpytm) ( 1 ), [CuCl2(4‐bpytm)2] ( 3 ) and [CuBr2(4‐bpytm)2] ( 4 ) were determined by single‐crystal X‐ray diffraction analysis. X‐ray analysis of the 1:2 derivatives reveals that the copper atom has a distorted (4 + 2) octahedral environment. The copper atom is coordinated by four nitrogen atoms from four bridging 4‐bpytm ligands and two halogen atoms. The axial Cu–N bonds are considerably longer than the equatorial Cu–N bonds owing to JahñTeller distortion. CuX2 units are linked to each other through bridging 4‐bpytm ligands to form a 2D interpenetrated coordination polymer. The structural parameters of the 4‐bpytm ligand in these complexes were compared with those of the free ligand.  相似文献   

9.
Four novel Cu(II) chelates were synthesized by reacting hydrated CuCl2 and Cu(CH3COO)2 with two derivatives of 1,3,4-thiadiazolethiosemicarbazone. The structures and geometries of the synthesized complexes were deduced applying the alternative analytical and spectral tools confirming the complexes to have the formulae [(LH)Cu(Cl)]•0.5H2O, [(LH)Cu(OAc)(H2O)2]•0.5H2O, [(LCl)Cu(Cl)(H2O)2]•H2O and [(LCl)Cu(OAc)]; where LH and LCl are phenyl and p-chlorophenyl derivatives of 1,3,4-thiadiazolethiosemicarbazone ligands, respectively (deprotonated form). IR spectral data confirmed the coordination of the ligands to the copper center as monobasic tridentate in the thiol form. Thermal analysis, UV–Vis spectra and magnetic moment assured the geometry around the copper center to be square planar, trigonal bipyramid and octahedral which have been confirmed by the computational studies. The two ligand derivatives and their copper complexes were applied to evaluate their binding modes with SS-DNA via UV–Vis spectral titration and viscosity measurements. The DNA-binding constant (kb) values of the investigated derivatives were calculated and compared with ethidium bromide in order to assess their mode of binding with DNA. Moreover, docking study of these complexes was carried out to recognize the drug–DNA interactions and to calculate their binding energies.  相似文献   

10.
Complexes of Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O2 with 2-acetylpyridine-[N-(3-hydroxy-2-naphthoyl)] hydrazone (H2APHNH) have been prepared and characterized by elemental analysis, molar conductance, thermal (TG, DTG), spectral (1H NMR, IR, UV–Vis, ESR) and magnetic measurements. 1H NMR spectrum of the ligand suggests the presence of intramolecular hydrogen bonding. IR spectra show that H2APHNH is a bidentate, tridentate and/or tetradentate ligand. Thermal decomposition of some complexes ended with metal oxide as a final product. ESR spectra gave evidence for the proposed structure and the bonding for some Cu(II) complexes. Biological activity measurements were carried out.  相似文献   

11.
A new series of bimetallic bis(diphenylphosphino)acetylene-bridged copper(I) 1,10-phenanthroline complexes, [Cu2(dppa)2(L)2](BF4)2; L?=?1,10-phenanthroline (1); 4-methyl-1,10-phenanthroline (2); 4,7-dimethyl-1,10-phenanthroline (3); and 2,9-dimethyl-1,10-phenanthroline (4), have been prepared and characterized by spectroscopic methods. The X-ray structures of 1 and 4 were determined. The structures consist of centrosymmetric bimetallic 10-membered chair-like dimetallacycles. In 1, intermolecular C–H?π interactions result in bending of the phenanthroline ligand and sterically induced lengthening of one Cu–P bond. In 1–4, the 31P NMR downfield coordination shift, relative to the free ligand, correlates with the basic strength of the 1,10-phenanthroline ligands.  相似文献   

12.
A new series of transition-metal complexes of Schiff base ligand containing the amino mercapto triazole moiety ( HL ) was prepared. The Schiff base and its metal complexes were elucidated by different spectroscopic techniques (infrared [IR], 1H nuclear magnetic resonance, UV–Visible, mass, and electron spin resonance [ESR]), and magnetic moment and thermal studies. Quantum chemical calculations have been carried out to study the structure of the ligand and some of its complexes. The IR spectra showed that the ligand is chelated with the metal ion in a neutral, tridentate, and bidentate manner using NOS and NO donors in complexes 1 – 6 , 10–12 , and 7 and 8 , respectively, whereas it behaves in a monobasic tridentate fashion using NOS donor sites in copper(II) nitrate complex ( 9 ). The magnetic moment and electronic spectra data revealed octahedral and square pyramidal geometries for complexes 2 , 11 , 12 , and 5 – 8 and 10 , respectively. However, the other complexes were found to have tetrahedral ( 4 ), trigonal bipyramidal ( 1 and 3 ), and square planar ( 9 ) structures. Thermal studies revealed that the chelates with different crystallized solvents undergo different types of interactions and the decomposition pathway ended with the formation of metal oxygen (MO) and metal sulfur (MS) as final products. The ESR spectrum of copper(II) complex 10 is axial in nature with hyperfine splitting with 2B1g as a ground state. By contrast, complexes 7 and 8 undergo distortion around the Cu(II) center, affording rhombic ESR spectra. The HL ligand and some of its complexes were screened against two bacterial species. Data showed that complex 12 demonstrated a better antibacterial activity than HL ligand and other chelates.  相似文献   

13.
Three rare heteromultinuclear complexes, [NiL(4,4′-bipy)Pr (NO3)3]·(CH3)2CHOH ( 1 ), [{CuLSm (NO3)3}2(4,4′-bipy)]·CH3OH ( 2 ) and [{CuL (CH3CH2OH)Eu (NO3)3] ( 3 ) with a symmetrical salamo-like hexadentate ligand H2L have been synthesized, and characterized by FT-IR, UV–vis and X-ray crystallography. Complex 1 is a 1D coordination polymer constructed from heterobimetallic [Ni(L)Pr (NO3)3] units which are connected by the exo-dentate ligand 4,4′-bipy bearing nitrogen-donor atoms. Complex 2 is a heterotetranuclear dimer based on [Cu(L)Sm (NO3)3] moieties which are linked through the exo-dentate 4,4′-bipy hasing nitrogen-donor atoms. Complex 3 is a heterodinuclear structure, Cu (II) atom is five-coordinate possessing a distorted square pyramidal geometry, and Eu (III) atom is a deca-coordinate adopting a distorted bicapped square antiprism. In addition, fluorescence and antimicobial properties of the ligand H2L and its complexes 1 – 3 have also been discussed.  相似文献   

14.
Three multinuclear Cu (II), Zn (II) and Cd (II) complexes, [Cu2(L)(μ‐OAc)]·CHCl2 ( 1 ), [Zn2(L)(μ‐OAc)(H2O)]·3CHCl3 ( 2 ) and [{Cd2(L)(OAc)(CH3CH2OH)}2]·2CH3CH2OH ( 3 ) with a single‐armed salamo‐like dioxime ligand H3L have been synthesized, and characterized by FT‐IR, UV–vis, X‐ray crystallography and Hirshfeld surfaces analyses. The ligand H3L has a linear structure and C‐H···π interactions between the two molecules. The complex 1 is a dinuclear Cu (II) complex, Cu1 and Cu2 are all five‐coordinate possessing distorted square pyramidal geometries. The complex 2 also forms a dinuclear Zn (II) structure, and Zn1 and Zn2 are all five‐coordinate bearing distorted trigonal bipyramidal geometries. The complex 3 is a symmetrical tetranuclear Cd (II) complex, and Cd1 is a hexa‐coordinate having octahedral configuration and Cd2 is hepta‐coordinate with a pentagonal bipyramidal geometry, and it has π···π interactions inside the molecule. In addition, fluorescence properties of the ligand and its complexes 1 – 3 have also been discussed.  相似文献   

15.
Hydrido complexes [MnH(CO)3L1–3] [L1 = 1,2‐bis‐(diphenylphosphanoxy)‐ethane ( 1 ); L2 = 1,2‐bis‐(diisopropylphosphanoxy)ethane ( 2 ); L3 = 1,3‐bis‐(diphenylphosphanoxy)‐propane ( 3 )] were prepared by treating [MnH(CO)5] with the appropriate bidentate ligand by heating to reflux. Photoirradiation of a toluene solution of complexes 1 and 2 in the presence of PPhn(OR)3–n (n = 0, 1; R = Me, Et) leads to the replacement of a CO ligand by the corresponding monodentate phosphite or phosphonite ligand to give new hydrido compounds of formula [MnH(CO)2(L1–2)(L)] [L = P(OMe)3 ( 1a – 2a ); P(OEt)3 ( 1b – 2b ); PPh(OMe)2 ( 1c – 2c ); PPh(OEt)2 ( 1d – 2d )]. All complexes were characterized by IR, 1H, 13C and 31P NMR spectroscopy. In case of compounds 2 and 3 , suitable crystals for X‐ray diffraction studies were isolated.  相似文献   

16.
Two classes of pincer‐type PtII complexes containing tridentate N‐donor ligands ( 1 – 8 ) or C‐deprotonated N^C^N ligands derived from 1,3‐di(2‐pyridyl)benzene ( 10 – 13 ) and auxiliary N‐heterocyclic carbene (NHC) ligand were synthesized. [Pt(trpy)(NHC)]2+ complexes 1 – 5 display green phosphorescence in CH2Cl2 (Φ: 1.1–5.3 %; τ: 0.3–1.0 μs) at room temperature. Moderate‐to‐intense emissions are observed for 1 – 7 in glassy solutions at 77 K and for 1 – 6 in the solid state. The [Pt(N^C^N)(NHC)]+ complexes 10 – 13 display strong green phosphorescence with quantum yields up to 65 % in CHCl3. The reactions of 1 with a wide variety of anions were examined in various solvents. The tridentate N‐donor ligand of 1 undergoes displacement reaction with CN? in protic solvents. Similar displacement of the N^C^N ligand by CN? has been observed for 10 , leading to a luminescence “switch‐off” response. The water‐soluble 7 containing anthracenyl‐functionalized NHC ligand acts as a light “switch‐on” sensor for the detection of CN? ion with high selectivity. The in vitro cytotoxicity of the PtII complexes towards HeLa cells has been evaluated. Complex 12 showed high cytotoxicity with IC50 value of 0.46 μM , whereas 1 – 4 and 6 – 8 are less cytotoxic. The cellular localization of the strongly luminescent complex 12 traced by using emission microscopy revealed that it mainly localizes in the cytoplasmic structures rather than in the nucleus. This complex can induce mitochondria dysfunction and subsequent cell death.  相似文献   

17.
The solution reaction of Cu(CH3CN)4(PF6) with a NN ligand 2-(2′-quinolyl)benzimidazole and a sterically bulky P ligand tris(2-methylphenyl)phosphine facilely yielded the three-coordinate copper(I) complex [Cu(2-QBI)(o-Tol3P)](PF6) (1). The complex has been characterized by single-crystal X-ray diffraction, Fourier Transform infrared spectroscopy and elemental analysis, UV–Vis (ultraviolet–visible) and photoluminescent spectroscopy studies. Time-dependent density functional theory has been used for calculating the electronic origin of the low-lying excited states, which were unexpectedly assigned mainly as a ligand-to-ligand or an intra-ligand charge transfer state instead of the metal-to-ligand charge transfer transition. Interestingly, 1 exhibits a concentration-dependent absorption in solution. This absorption behavior is interpreted as some excimer's formation based on the study of supramolecular structure, spectroscopy and calculations.  相似文献   

18.
A series of transition metal (II/III) complexes containing organometallic Schiff base ligand (H2L) had been synthesized and characterized by using elemental analysis (C, H, N, M), molar conductivity, IR, UV–Vis, 1H NMR and mass spectral analysis. Also, their TG and DTG behaviors were investigated. The ligand was prepared by condensation of 4-aminosalicylic acid with 2-acetylferrocene in 1:1 M ratio. The data of elemental analysis indicated that the prepared complexes were synthesized also in a 1:1 M ratio. The ligand behaved as neutral bidentate ligand that coordinated to metal ions through protonated O-phenolic and protonated carboxylic-OH groups. All complexes had octahedral structure. DFT calculations for H2L ligand were determined with some parameters such as HOMO-LUMO energy gab, electronegativity and chemical hardness–softness. Antimicrobial activity of both H2L Schiff base ligand and its metal complexes was tested against different strains of bacteria and fungi species. Furthermore, all compounds had been screened for their anticancer activities against breast cancer (MCF-7) cell line. [Cu(H2L)(H2O)2Cl2]·2H2O complex had the lowest IC50 value = 47.3 µg/mL. For determining the more effective and probable binding mode between the H2L ligand, Co(II) and Zn(II) complexes with different active sites of 4K3V, 2YLB and 3DJD receptors, so molecular docking studies were investigated.  相似文献   

19.
《Journal of Coordination Chemistry》2012,65(16-18):2814-2830
Abstract

Co(II), Ni(II), and Cu(II) complexes of 2-Amino-5-ethyl-1,3,4-thiadiazole (AET) and 2-Amino-5-(ethylthio)-1,3,4-thiadiazole (AEST) have been synthesized and characterized based on elemental analysis, magnetic susceptibility, infrared (4000–400 cm?1), mass spectrometry (ESI and MALDI), UV–Vis (200–1100 nm) and thermal analysis (TGA/DTA). Molar conductance measurements proved that [M(L)2(H2O)2]Cl2·H2O are electrolytic complexes where M represents Co, Ni, and Cu divalent metal ions. The geometrical isomerism of [M(L)2(H2O)2]2+ ions were investigated by DFT-B3LYP calculations incorporated in Gaussian09 package; it favored the all trans isomers due to having the lowest energy points on the potential energy surface. The outcome of DFT-B3LYP quantum mechanical calculations using 6-31G(d) basis set favor six-coordinate sites via a bidentate ligand through exo amino and adjacent endo thiadiazole nitrogen (N3) donors. These results were consistent with magnetic measurements combined with infrared and UV–Vis spectral interpretations. The predicted metal–ligand binding energies from B3LYP/6-31G(d) calculations follow the trend Cu2+>Ni2+>Co2+, in agreement with the Irving–Williams series. Both AET and AEST ligands and the synthesized complexes were screened for their antibacterial activity and the outcome was high antimicrobial activity of the complexes compared to the free ligands against one or more microbial species and in some cases (copper complexes) higher activity than standard drugs.  相似文献   

20.
The simultaneous TG/DTG–DTA technique was used for three new cobalt(II) complexes with dipyridylamine (dpamH) and the anion of a 2-hydroxyphenone ligand (phenone), with the general formula [Co(dpamH)2(phenone)]Br, in order to determine their thermal degradation in static air and dynamic nitrogen atmospheres, which was found to be a multi-step decomposition related to the release of the ligand molecules. The complexes were characterized by elemental analyses, FT-IR and UV–Vis spectroscopy, magnetic and conductivity measurements. All structures were determined by X-ray crystallography revealing octahedral coordination of cobalt(II) and monomeric nature of the compounds, [Co(dpamH)2(2-OH-acetophenone)]Br (1), [Co(dpamH)2(2-OH-propiophenone)]Br (2) and [Co(dpamH)2(2-OH, 5-CH3-acetophenone)]Br·EtOH (3). The variable temperature (76–303 K) magnetic susceptibility measurements showed a paramagnetic nature of the complexes, in accordance with their molecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号