首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
The light‐driven crawling of a molecular crystal that can form three phases, (α, β, and γ) is presented. Laser irradiation of the molecular crystal can generate phase‐dependent transient elastic lattice deformation. The resulting elastic lattice deformation that follows scanning irradiation of a laser can actuate the different phases of molecular crystal to move with different velocity and direction. Because the γ phase has a large Young's modulus (ca. 26 GPa), a force of 0.1 μN can be generated under one laser spot. The generated force is sufficient to actuate the γ‐formed molecular crystals in a wide dimensional range to move longitudinally at a velocity of about 60 μm min?1, which is two orders of magnitude faster than the α and β phases.  相似文献   

2.
Chemical pretreatment is widely used to facilitate transformation of living cells when foreign components are introduced into a cell through the cell wall. The influence of appropriate chemicals on the wall properties and mechanism of transformation is still a matter of intensive studies. Saccharomyces cerevisiae cells (also known as baker's yeast) were investigated by atomic force microscopy (AFM). The cell walls were modified by lithium acetate and dithiothreitol. The AFM imaging was performed in liquid water‐based environment. The living cells were fixed by trapping into the holes of a polycarbonate membrane. Mechanical and morphological properties of initial intact cells and treated cells were investigated. The increased stiffness of the chemically treated cells was observed. As deduced from the applied theoretical Hertz‐Sneddon model, the treated cells show completely different response mechanism to applied mechanical pressure in comparison with the intact cells. Also, the increased roughness of the cell wall of the treated yeasts was observed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A study of the anisotropic microhardness and Young's modulus of transcrystalline isotactic polypropylene grown from the surface of high modulus carbon fibers is described. Static microindentation experiments were performed with Knoop and Vickers tips. The Young's moduli of the transcrystalline region were estimated from Knoop microindentation data by using a method recently developed in our laboratory. Data for the different lamellar directions were generated using the Knoop tip, which is sensitive to material anisotropy. We found that the hardness and Young's modulus of the transcrystalline layer are higher by up to 30% when the longer diagonal of the probing Knoop tip is perpendicular to the transcrystalline growth direction, compared to when the diagonal is parallel to that direction. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 523–530, 1999  相似文献   

4.
5.
Expressions for the directional dependence of Young's modulus and Poisson's ratio were derived for a general material under plane‐stress conditions. Experiments with a laser extensometer to measure the Young's modulus and Poisson's ratio directly by a tension test are described, and the results are compared with the theoretical expressions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 260–266, 2004  相似文献   

6.
Coarse‐grained (CG) implicit‐solvent potentials are developed for tetra‐polyethylene glycol (PEG) at different water concentrations using the iterative Boltzmann inversion (IBI) technique. The resulting potentials are used to study the swelling and tensile properties of tetra‐PEG gels at various swelling degrees φm. Two types of network topologies are considered, one “ideal” with a defect‐free diamond connectivity and the other “realistic” as simulated from an experimentally based cross‐linking process. Equilibrium swelling results for the realistic Tetra‐PEG networks are consistent with available experimental data, while those for the ideal tetra‐PEG networks exhibit much larger swelling. The realistic networks have higher Young's modulus E m at the same φm than ideal networks due to the presence of trapped entanglements. Uniaxial deformation results of realistic networks show that E m increases with degree of swelling, in accord with experimental results. The Young's moduli of gels at different φm confirm that the CG potentials developed by IBI are most suited to predict swelling states commensurate with the φm values at which the potentials were calibrated. A more generic, coarser potential, based on matching the persistence length of atomistic PEG chains in water, is able to produce a similar swelling behavior of an ideal diamond network.

  相似文献   


7.
Poly(aramid silicone) (PAS) multiblock copolymers were synthesized by the low‐temperature solution polycondensation of isophthaloyl dichloride (IPC) and two diamines, diamino poly(dimethyl siloxane) (PDMS; number‐average molecular weight = 1680) and 3,4′‐diaminodiphenylether (3,4′‐DAPE), in tetrahydrofuran/dimethylacetamide (2/1 v/v). Two synthetic methods for the control of the PAS sequence were used: a one‐step synthesis that presumably gave PAS with a random sequence and the polymerization of 3,4′‐DAPE with a presynthesized dimer, IPC–PDMS–IPC (two‐step synthesis), that presumably gave PAS with an alternating sequence of 3,4′‐DAPE and PDMS segments. In a 1H NMR study of the amide protons of the 3,4′‐DAPE component in PAS, the relative length of the 3,4′‐DAPE segment of randomly sequenced PAS to that of ideally sequenced PAS could be estimated. The glass‐transition temperatures of the 3,4′‐DAPE and PDMS segments of random PAS were 152–234 and ?104 to ?117 °C, respectively, whereas the alternating PAS sequences showed no glass transition for the 3,4′‐DAPE segments. A tensile test indicated that randomly sequenced PAS behaved like a rubber‐toughened material at lower PDMS contents and like a thermoplastic elastomer at higher PDMS contents, whereas the alternately sequenced PAS behaved like a very soft rubber, showing a high value of elongation at the breaking point. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 841–852, 2003  相似文献   

8.
In crystalline molecular solids, in the absence of strong intermolecular interactions, entropy-driven processes play a key role in the formation of dynamically modulated transient phases. Specifically, in crystalline simvastatin, the observed fully reversible enantiotropic behavior is associated with multiple order–disorder transitions: upon cooling, the dynamically disordered high-temperature polymorphic Form I is transformed to the completely ordered low-temperature polymorphic Form III via the intermediate (transient) modulated phase II. This behavior is associated with a significant reduction in the kinetic energy of the rotating and flipping ester substituents, as well as a decrease in structural ordering into two distinct positions. In transient phase II, the conventional three-dimensional structure is modulated by periodic distortions caused by cooperative conformation exchange of the ester substituent between the two states, which is enabled by weakened hydrogen bonding. Based on solid-state NMR data analysis, the mechanism of the enantiotropic phase transition and the presence of the transient modulated phase are documented.  相似文献   

9.
We used micropipette aspiration of giant unilamellar vesicles to directly measure the areal expansion of gel (Lβ′) phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers induced by exposure to ethanol/water mixtures. Areal expansion began in 7 vol% ethanol and increased monotonically as the concentration of ethanol was increased to 15 vol% at which point areal expansion reached a plateau of 50%. This ethanol concentration range is in good agreement with that of the interdigitated phase (LβI) of DPPC, therefore, we believe that this is the first direct measurement of the areal expansion accompanying interdigitation of gel-phase lipids. Our observations are consistent with the presence of coexisting LβI and Lβ′ phases in ethanol concentrations between 7% and 15 vol% and 100% LβI phase in 15 vol% ethanol and higher. We observed a bimodal distribution of areal expansion (0% and 20%) induced by 7 vol% ethanol indicating that at the threshold concentration, interdigitation is induced in only a portion of DPPC vesicles. Areal expansion could not be easily reversed, consistent with kinetic trapping of the LβI phase. DPPC vesicles exposed to butanol at the known threshold and plateau concentrations for the LβI phase displayed areal expansion behavior consistent with our ethanol observations. However, the area expanded significantly faster for DPPC bilayers exposed to butanol vs. ethanol, which we attribute to enhanced partitioning of the longer-chained butanol into the lipid headgroups. Ethanol-induced areal expansion of DPPC bilayers was inhibited by inclusion of 10 mol% and 25 mol% cholesterol in the bilayer. However, areal expansion could be induced by application of tensions (∼8 mN/m) similar to the phenomena of interdigitation induced by high pressure. The presence of 20 vol% ethanol significantly decreased surface cohesion of DPPC bilayers containing 25 mol% cholesterol as evidenced by a decreased area compressibility modulus and lysis tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号