首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rechargeable aqueous zinc batteries (RAZB) have been re-evaluated because of the superiority in addressing safety and cost concerns. Nonetheless, the limited lifespan arising from dendritic electrodeposition of metallic Zn hinders their further development. Herein, a metal–organic framework (MOF) was constructed as front surface layer to maintain a super-saturated electrolyte layer on the Zn anode. Raman spectroscopy indicated that the highly coordinated ion complexes migrating through the MOF channels were different from the solvation structure in bulk electrolyte. Benefiting from the unique super-saturated front surface, symmetric Zn cells survived up to 3000 hours at 0.5 mA cm−2, near 55-times that of bare Zn anodes. Moreover, aqueous MnO2–Zn batteries delivered a reversible capacity of 180.3 mAh g−1 and maintained a high capacity retention of 88.9 % after 600 cycles with MnO2 mass loading up to 4.2 mg cm−2.  相似文献   

2.
Aqueous zinc-ion batteries have rapidly developed recently as promising energy storage devices in large-scale energy storage systems owing to their low cost and high safety. Research on suppressing zinc dendrite growth has meanwhile attracted widespread attention to improve the lifespan and reversibility of batteries. Herein, design methods for dendrite-free zinc anodes and their internal mechanisms are reviewed from the perspective of optimizing the host–zinc interface and the zinc–electrolyte interface. Furthermore, a design strategy is proposed to homogenize zinc deposition by regulating the interfacial electric field and ion distribution during zinc nucleation and growth. This Minireview can offer potential directions for the rational design of dendrite-free zinc anodes employed in aqueous zinc-ion batteries.  相似文献   

3.
水系锌离子电池采用金属锌作为负极材料,具有绿色环保、安全等优势,有望用于大规模储能。锌金属的储量比锂更加丰富,也更容易开采与提纯。同时,锌具有较低的氧化还原电位(-0.76V vs SHE)和较高的理论比容量(820 mAh·g-1)和体积容量密度(5 854 mAh·cm-3)。由于充放电过程中存在锌枝晶和不可逆副产物(如H2、ZnO、Zn4(OH)6SO4)等问题,造成锌负极的库仑效率较低,严重缩短了电池的循环寿命,限制了其实际应用。本文针对锌负极在实际应用中遇到的困难与瓶颈,从微观层面分析了锌负极沉积/溶解的动力学与热力学机理,并从锌电极表面改性、锌片内部结构优化、电解液改性和新型隔膜等方面,介绍了锌负极保护的各种策略,并通过具体实例,分析了其制备方法和改性机理以及最终对电池性能的改善效果,为实用高效的锌负极保护方法提供了思路。最后,文章讨论了锌负极在商业化过程中面临的机遇和挑战,并对未来的研究前景和热点进行了展望。  相似文献   

4.
Rechargeable aqueous zinc batteries (RAZB) have been re‐evaluated because of the superiority in addressing safety and cost concerns. Nonetheless, the limited lifespan arising from dendritic electrodeposition of metallic Zn hinders their further development. Herein, a metal–organic framework (MOF) was constructed as front surface layer to maintain a super‐saturated electrolyte layer on the Zn anode. Raman spectroscopy indicated that the highly coordinated ion complexes migrating through the MOF channels were different from the solvation structure in bulk electrolyte. Benefiting from the unique super‐saturated front surface, symmetric Zn cells survived up to 3000 hours at 0.5 mA cm?2, near 55‐times that of bare Zn anodes. Moreover, aqueous MnO2–Zn batteries delivered a reversible capacity of 180.3 mAh g?1 and maintained a high capacity retention of 88.9 % after 600 cycles with MnO2 mass loading up to 4.2 mg cm?2.  相似文献   

5.
The development of efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) still remains a challenge in a wide range of renewable energy technologies. Herein, CuCo alloy nanoparticles encapsulated by nitrogen-doped carbonaceous nanoleaves (CuCo-NC) have been synthesized from a Cu(OH)2/2D leaf-like zeolitic imidazolate framework (ZIF-L)-pyrolysis approach. Leaf-like Cu(OH)2 is first prepared by the ultrasound-induced self-assembly of Cu(OH)2 nanowires. The efficient encapsulation of Cu(OH)2 in ZIF-L is obtained owing to the morphology fitting between the leaf-like Cu(OH)2 and ZIF-L. CuCo-NC catalysts present superior electrocatalytic activity and stability toward ORR and OER over the commercial Pt/C and IrO2, respectively, which are further used as bifunctional oxygen electrocatalysts in Zn–air batteries and exhibit impressive performance, with a high peak power density of 303.7 mW cm−2, large specific capacity of up to 751.4 mAh g−1 at 20 mA cm−2, and a superior recharge stability.  相似文献   

6.
Aqueous zinc‐ion batteries have rapidly developed recently as promising energy storage devices in large‐scale energy storage systems owing to their low cost and high safety. Research on suppressing zinc dendrite growth has meanwhile attracted widespread attention to improve the lifespan and reversibility of batteries. Herein, design methods for dendrite‐free zinc anodes and their internal mechanisms are reviewed from the perspective of optimizing the host–zinc interface and the zinc–electrolyte interface. Furthermore, a design strategy is proposed to homogenize zinc deposition by regulating the interfacial electric field and ion distribution during zinc nucleation and growth. This Minireview can offer potential directions for the rational design of dendrite‐free zinc anodes employed in aqueous zinc‐ion batteries.  相似文献   

7.
Rechargeable aqueous zinc batteries are promising but hindered by unfavorable dendrite growth and side reactions on zinc anodes. In this study, we demonstrate a fast melting-solidification approach for effectively converting commercial Zn foils into single (002)-textured Zn featuring millimeter-sized grains. The melting process eliminates initial texture, residual stress, and grain size variations in diverse commercial Zn foils, guaranteeing the uniformity of commercial Zn foils into single (002)-textured Zn. The single (002)-texture ensures large-scale epitaxial and dense Zn deposition, while the reduction in grain boundaries significantly minimizes intergranular reactions. These features enable large grain single (002)-textured Zn shows planar and dense Zn deposition under harsh conditions (100 mA cm−2, 100 mAh cm−2), impressive reversibility in Zn||Zn symmetric cell (3280 h under 1 mA cm−2, 830 h under 10 mAh cm−2), and long cycling stability over 180 h with a high depth of discharge value of 75 %. This study successfully addresses the issue of uncontrollable texture formation in Zn foils following routine annealing treatments with temperatures below the Zn melting point. The findings of this study establish a highly efficient strategy for fabricating highly reversible single (002)-textured Zn anodes.  相似文献   

8.
水系锌离子电池(AZIBs)以低成本、高安全性和高环保特性在大规模储能领域具有广阔的应用前景,当前备受关注的正极材料是研究的热点.锰基化合物因具有资源丰富、环境友好和价格低廉等优点,是最具市场应用前景的一类正极材料.本文详细综述了不同锰基化合物的结构特点以及锰基AZIBs在充放电过程中涉及的四种储能机理,讨论了AZIB...  相似文献   

9.
Coordination polymers are promising cathode materials for rechargeable alkaline batteries. Therefore, the precise modulation of these cathodes by chemical structure and in-depth structure transform study is necessary. Here, two model coordination polymer battery cathodes were designed to demonstrate the dynamic structure–performance relationship. We studied the electrochemical performance of two kinds of nickel-based coordination polymer, comprising a planar 2D cyanide-bridged network and a 3D cyanide-bridged network pillared by pyrazine molecules. The 2D coordination polymer showed serious voltage degradation with poor rate capability, whereas the 3D coordination polymer exhibited stable voltage output coupled with high rate at various current densities. The investigation revealed the underlining relationship of plateau voltage degradation and hydrolysis process of electrodes. It was revealed that the pyrazine pillar molecules in the 3D coordination polymer could suppress the hydrolysis and lead to the in situ formation of partially hydrolyzed structure with excellent electrochemical kinetics; this exhibited obvious smaller peak separation (27 mV compared with 149 mV) and hence an almost twofold increase in capacity retention (31.9 to 50.0 %) and energy density retention (18.2 to 35.9 %) at 10 A g−1.  相似文献   

10.
电解液添加剂能有效缓解锌金属阳极的不可控枝晶生长和固有副反应,大幅提升锌金属阳极的循环稳定性和可逆性,对水系锌离子电池的发展和商业化应用具有重要意义。本文通过对近期水系锌离子电池电解液添加剂的研究进展进行了系统总结和分析,简要介绍了锌金属阳极目前面临的主要挑战及其相关机理,重点阐述了电解液添加剂对锌金属阳极界面的作用机制,包括改变溶剂化结构、调节沉积方式、构筑界面保护层。此外,还对不同类型电解液添加剂进行了分类讨论,包括离子添加剂、无机添加剂和有机添加剂。最后,我们进一步对电解液添加剂策略在提升水系锌离子电池电化学性能中存在的科学问题和未来的研究方向进行了总结与展望。  相似文献   

11.
Crystallography modulation of zinc (Zn) metal anode is promising to promote Zn reversibility in aqueous electrolytes, but efficiently constructing Zn with specific crystallographic texture remains challenging. Herein, we report a current-controlled electrodeposition strategy to texture the Zn electrodeposits in conventional aqueous electrolytes. Using the electrolytic cell with low-cost Zn(CH3COO)2 electrolyte and Cu substrate as a model system, the texture of as-deposited Zn gradually transforms from (101) to (002) crystal plane as increasing the current density from 20 to 80 mA cm−2. Moreover, the high current accelerates the Zn nucleation rate with abundant nuclei, enabling uniform deposition. The (002) texture permits stronger resistance to dendrite growth and interfacial side reactions than the (101) texture. The resultant (002)-textured Zn electrode achieves deep cycling stability and supports the stable operation of full batteries with conventional V/Mn-based oxide cathodes.  相似文献   

12.
Organic electrode materials hold great potential for fabricating sustainable energy storage systems, however, the development of organic redox‐active moieties for rechargeable aqueous zinc‐ion batteries is still at an early stage. Here, we report a bio‐inspired riboflavin‐based aqueous zinc‐ion battery utilizing an isoalloxazine ring as the redox center for the first time. This battery exhibits a high capacity of 145.5 mAh g?1 at 0.01 A g?1 and a long‐life stability of 3000 cycles at 5 A g?1. We demonstrate that isoalloxazine moieties are active centers for reversible zinc‐ion storage by using optical and photoelectron spectroscopies as well as theoretical calculations. Through molecule‐structure tailoring of riboflavin, the obtained alloxazine and lumazine molecules exhibit much higher theoretical capacities of 250.3 and 326.6 mAh g?1, respectively. Our work offers an effective redox‐active moiety for aqueous zinc batteries and will enrich the valuable material pool for electrode design.  相似文献   

13.
Aqueous zinc-ion batteries are inherently safe, but the severe dendrite growth and corrosion reaction on zinc anodes greatly hinder their practical applications. Most of the strategies for zinc anode modification refer to the research of lithium metal anodes on surface regulation without considering the intrinsic mechanisms of zinc anode. Herein, we first point out that surface modification cannot permanently protect zinc anodes due to the unavoidable surface damage during the stripping process by solid–liquid conversion. A bulk-phase reconstruction strategy is proposed to introduce abundant zincophilic sites both on the surface and inside the commercial zinc foils. The bulk-phase reconstructed zinc foil anodes exhibit uniform surfaces with high zincophilicity even after deep stripping, significantly improving the resistance to dendrite growth and side reactions. Our proposed strategy suggests a promising direction for the development of dendrite-free metal anodes for practical rechargeable batteries with high sustainability.  相似文献   

14.
Flow batteries (FBs) have become a central topic recently, due to their promising prospect of addressing the issues of the random and intermittent nature of renewable energy sources. However, the successful industrialization of current FB systems is still limited by their relatively low energy densities and high cost. Research and development into novel aqueous FB systems with high energy density, high safety, and low cost are accordingly urgently required. Some novel aqueous FB systems have been explored in recent years to overcome issues of traditional FBs and vanadium FBs, in particular. Further modifications have also been made to improve their performance. In this review, appealing novel aqueous FB systems, such as zinc- and quinone-based FB systems, are reviewed, in terms of the operating principles, advantages, drawbacks, corresponding performance, and subsequent modifications. Moreover, recent investigations and advancements, and prospective research directions for novel aqueous FB systems, are summarized. Therefore, this review will provide guidance and perspectives for developing new aqueous FB systems.  相似文献   

15.
Rechargeable batteries have been used to power various electric devices and store energy from renewables, but their toxic components (namely, electrode materials, electrolyte, and separator) generally cause serious environment issues when disused. Such toxicity characteristic makes them difficult to power future wearable electronic devices. Now an environmentally friendly and highly safe rechargeable battery, based on a pyrene‐4,5,9,10‐tetraone (PTO) cathode and zinc anode in mild aqueous electrolyte is presented. The PTO‐cathode shows a high specific capacity (336 mAh g?1) for Zn2+ storage with fast kinetics and high reversibility. Thus, the PTO//Zn full cell exhibits a high energy density (186.7 Wh kg?1), supercapacitor‐like power behavior and long‐term lifespan (over 1000 cycles). Moreover, a belt‐shaped PTO//Zn battery with robust mechanical durability and remarkable flexibility is first fabricated to clarify its potential application in wearable electronic devices.  相似文献   

16.
Amorphous nanoparticles of ZnO and TiO2 embedded in carbon nanocages (AZT⊂CNCs) were successfully synthesized through a simple annealing process of TiO2-coated zeolitic imidazolate framework-8 (ZIF-8). In the current anode of AZT⊂CNCs, tiny ZnO and TiO2 nanoparticles were uniformly distributed in the carbon matrix (carbon nanocages), which could effectively buffer the volume expansion of electroactive ZnO and provide excellent electric conductivity. After fully investigating the electrochemical performance of the AZT⊂CNCs samples obtained with different additive amounts of tetrabutyl orthotitanate (TBOT) for TiO2 coating, it has been found that AZT-30 (0.1 g ZIF-8 with 30 mL TBOT) shows the best cycle stability (510 mA h g−1 after 350 cycles at 200 mA g−1) and a superior rate capability (610 mA h g−1 after 3500 cycles at 2 A g−1). The greatly enhanced Li-ion storage performance could be ascribed to the fact that the introduction of amorphous TiO2 could activate the reversible lithiation/delithiation reaction of ZnO during the charge/discharge process.  相似文献   

17.
Aqueous batteries using inorganic compounds as electrode materials are considered a promising solution for grid-scale energy storage, while wide application is limited by the short life and/or high cost of electrodes. Organics with carbonyl groups are being investigated as the alternative to inorganic electrode materials because they offer the advantages of tunable structures, renewability, and they are environmentally benign. Furthermore, the wide internal space of such organic materials enables flexible storage of various charged ions (for example, H+, Li+, Na+, K+, Zn2+, Mg2+, and Ca2+, and so on). We offer a comprehensive overview of the progress of organics containing carbonyls for energy storage and conversion in aqueous electrolytes, including applications in aqueous batteries as solid-state electrodes, in flow batteries as soluble redox species, and in water electrolysis as redox buffer electrodes. The advantages of organic electrodes are summarized, with a discussion of the challenges remaining for their practical application.  相似文献   

18.
Zinc ion batteries (ZIBs) exhibit significant promise in the next generation of grid-scale energy storage systems owing to their safety, relatively high volumetric energy density, and low production cost. Despite substantial advancements in ZIBs, a comprehensive evaluation of critical parameters impacting their practical energy density (Epractical) and calendar life is lacking. Hence, we suggest using formulation-based study as a scientific tool to accurately calculate the cell-level energy density and predict the cycling life of ZIBs. By combining all key battery parameters, such as the capacity ratio of negative to positive electrode (N/P), into one formula, we assess their impact on Epractical. When all parameters are optimized, we urge to achieve the theoretical capacity for a high Epractical. Furthermore, we propose a formulation that correlates the N/P and Coulombic efficiency of ZIBs for predicting their calendar life. Finally, we offer a comprehensive overview of current advancements in ZIBs, covering cathode and anode, along with practical evaluations. This Minireview outlines specific goals, suggests future research directions, and sketches prospects for designing efficient and high-performing ZIBs. It aims at bridging the gap from academia to industry for grid-scale energy storage.  相似文献   

19.
20.
Hybrid materials have obtained well-deserved attention for energy storage devices, because they show high capacitances and high energy densities induced by the synergistic effect between complementary components. Polyoxometalate-based metal–organic frameworks (POMOFs) possess the abundant redox-active sites and ordered structures of polyoxometalates (POMs) and metal–organic frameworks (MOFs), respectively. Here, an asymmetric supercapacitor (ASC) NENU-5/PPy/60//FeMo/C was fabricated in which both its electrodes are prepared from POMOF precursors. A typical POMOF material, NENU-5, was first connected with polypyrrole (PPy) through electrodeposition to form the cathode material NENU-5/PPy. Another representative POMOFs material, PMo12@MIL-100, was carbonized to obtain the anode material FeMo/C. Cathode NENU-5/PPy exhibited an extraordinary capacitance of 508.62 F g−1 (areal capacitance: 2034.51 mF cm−2). In addition, anode FeMo/C shows excellent cyclic stability attributed to its unique structure. Finally, benefiting from the outstanding capacitances and structural merits of the anode and cathode, assembled asymmetric supercapacitor NENU-5/PPy/60//FeMo/C achieves an energy density of 1.12 mWh cm−3 at a power density output of 27.78 mW cm−3, as well as a notable life of 10 000 cycles with an capacity retention of 80.62 %. Thus, the unique ASC is strongly competitive in high capacitance, long cycle life, and high energy-required energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号