首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endocytosis is an important route for the intracellular delivery of biomacromolecules, wherein their inefficient endosomal escape into the cytosol remains a major barrier. Based on the understanding that endosomal membranes are negatively charged, we focused on the potential of cationic lytic peptides for developing endosomolysis agents to release such entrapped molecules. As such, a venom peptide, Mastoparan X, was employed and redesigned to serve as a delivery tool. Appending a tri‐glutamate unit to the N‐terminus attenuates the cytotoxicity of Mastoparan X by about 40 fold, while introduction of a NiII‐dipicolylamine complex enhances cellular uptake of the peptide by about 17 fold. Using the optimized peptide, various fluorescently labeled macromolecules were successfully delivered to the cytosol, enabling live‐cell imaging of acetylated histones.  相似文献   

2.
《Analytical letters》2012,45(11):2017-2032
Abstract

Lytic peptides such as melittin and mastoparan are usually assayed by measuring the leakage of cell contents; e.g., hemolysis. When such peptides lyse liposomes containing concentration-quenched 6-carboxyfluorescein (6CF), the resulting fluorescence increase is proportional to the amount of lytic peptide added. Using this 6CF-liposome system, one can assay nanogram quantities of melittin. A protocol was developed to survey peptides for lytic activity and at the same time, to test for mast cell degranulating activity. Peptides possessed either, both, or neither of these activities. The dye-liposome system was used to assay HPLC fractions of bee venom. This fluorescence assay for lytic activity is more sensitive and convenient than the hemolysis method, does not require removal of unlysed structures, and does not require animal cells.  相似文献   

3.
Biomolecules such as antibodies, proteins, and peptides are important tools for chemical biology and leads for drug development. They have been used to inhibit a variety of extracellular proteins, but accessing intracellular proteins has been much more challenging. In this review, we discuss diverse chemical approaches that have yielded cell‐penetrant peptides and identify three distinct strategies: masking backbone amides, guanidinium group patterning, and amphipathic patterning. We summarize a growing number of large data sets, which are starting to reveal more specific design guidelines for each strategy. We also discuss advantages and disadvantages of current methods for quantifying cell penetration. Finally, we provide an overview of best‐odds approaches for applying these new methods and design principles to optimize cytosolic penetration for a given bioactive peptide.  相似文献   

4.
Mitochondrion is a promising target in cancer therapy. However, gaining access to this organelle is difficult due to the obstacles to cross the complicated mitochondrial membrane. Cell-penetrating peptides (CPPs) with mitochondrion-targeting ability, named mitochondrion-targeting peptides (MTPs), are efficient tools to deliver exogenous therapeutics into mitochondria. Herein, we report several new MTPs, which can be readily synthesized via resin-based solid-phase peptide synthesis. In particular, MTP3 (compound 5 ), consisting of three positively charged arginines and two D- and L- alternating naphthylalanines, demonstrated excellent mitochondrion-targeting ability with high Pearson's correlation coefficient, suggesting that MTP3 has good potential for mitochondrion-targeted drug delivery. As proof-of-concept, the feasibility of MTP3 was validated by the preparation of a mitochondrion-targeting prodrug (compound 17 , doxorubicin-based prodrug). This prodrug was subsequently confirmed to be specifically transported to the mitochondria of tumor cells, where it was able to release the native doxorubicin upon intracellular GSH activation, leading to mitochondrial depolarization and eventually cell death. Importantly, compound 17 showed good cytotoxicity against human tumor cells while negligible toxicity towards normal cells, indicating its potential as a potent mitochondrial medicine for targeted cancer therapy. Our study thus opens a way for engineered CPPs to be used to deliver bioactive cargos in mitochondrion-targeted cancer therapy.  相似文献   

5.
Phosphorylation and dephosphorylation of peptides by kinases and phosphatases is essential for signal transduction in biological systems, and many diseases involve abnormal activities of these enzymes. Herein, we introduce amphiphilic calixarenes as key components for supramolecular, phosphorylation‐responsive membrane transport systems. Dye‐efflux experiments with liposomes demonstrated that calixarenes are highly active counterion activators for established cell‐penetrating peptides, with EC50 values in the low nanomolar range. We have now found that they can even activate membrane transport of short peptide substrates for kinases involved in signal transduction, whereas the respective phosphorylated products are much less efficiently transported. This allows regulation of membrane transport activity by protein kinase A (PKA) and protein kinase C (PKC), as well as monitoring of their activity in a label‐free kinase assay.  相似文献   

6.
Exon‐skipping antisense oligonucleotides are effective treatments for genetic diseases, yet exon‐skipping activity requires that these macromolecules reach the nucleus. While cell‐penetrating peptides can improve delivery, proteolytic instability often limits efficacy. It is hypothesized that the bicyclization of arginine‐rich peptides would improve their stability and their ability to deliver oligonucleotides into the nucleus. Two methods were introduced for the synthesis of arginine‐rich bicyclic peptides using cysteine perfluoroarylation chemistry. Then, the bicyclic peptides were covalently linked to a phosphorodiamidate morpholino oligonucleotide (PMO) and assayed for exon skipping activity. The perfluoroaryl cyclic and bicyclic peptides improved PMO activity roughly 14‐fold over the unconjugated PMO. The bicyclic peptides exhibited increased proteolytic stability relative to the monocycle, demonstrating that perfluoroaryl bicyclic peptides are potent and stable delivery agents.  相似文献   

7.
8.
《先进技术聚合物》2018,29(10):2593-2600
Effective endosomal escape is required for practical application of nucleic acid therapeutics. In this study, we prepared siRNA micelleplexes with photothermally triggered endosomal escape and improved gene silencing activity in vitro. The micelleplexes were prepared from cholesterol‐modified and CXCR4‐inhibiting poly(amido amine)s (PAMD‐Ch). Near‐infrared dye IR780 was encapsulated in cationic PMAD‐Ch micelles, which then were used to form IR780 micelleplexes with siRNA. The micelleplexes displayed improved gene silencing efficiency upon laser irradiation, which was attributed to enhanced endosomal escape because of the photothermal effects of the encapsulated IR780. The IR780 micelleplexes retained the CXCR4 antagonism and inhibition of cancer cell invasion of the parent PAMD. Overall, this study validates codelivery of IR780 in siRNA micelleplexes as promising photothermally controlled siRNA delivery approach.  相似文献   

9.
Developing macrocyclic peptides that can reach intracellular targets is a significant challenge. This review discusses the most recent strategies used to develop cell permeable cyclic peptides that maintain binding to their biological target inside the cell. Macrocyclic peptides are unique from small molecules because traditional calculated physical properties are unsuccessful for predicting cell membrane permeability. Peptide synthesis and experimental membrane permeability is the only strategy that effectively differentiates between cell permeable and cell impermeable molecules. Discussed are chemical strategies, including backbone N-methylation and stereochemical changes, which have produced molecular scaffolds with improved cell permeability. However, these improvements often come at the expense of biological activity as chemical modifications alter the peptide conformation, frequently impacting the compound's ability to bind to the target. Highlighted is the most promising approach, which involves side-chain alterations that improve cell permeability without impact binding events.  相似文献   

10.
11.
Mitochondria are key organelles that perform vital cellular functions such as those related to cell survival and death. The targeted delivery of different types of cargos to mitochondria is a well-established strategy to study mitochondrial biology and diseases. Of the various existing mitochondrion-transporting vehicles, most suffer from poor cytosolic entry, low delivery efficiency, limited cargo types, and cumbersome preparation protocols, and none was known to be universally applicable for mitochondrial delivery of different types of cargos (small molecules, proteins, and nanomaterials). Herein, two new cell-penetrating, mitochondrion-targeting ligands (named MitoLigand) that are capable of effectively “tagging” small-molecule drugs, native proteins and nanomaterials are disclosed, as well as their corresponding chemoselective conjugation chemistry. Upon successful cellular delivery and rapid endosome escape, the released native cargos were found to be predominantly localized inside mitochondria. Finally, by successfully delivering doxorubicin, a well-known anticancer drug, to the mitochondria of HeLa cells, we showed that the released drug possessed potent cell cytotoxicity, disrupted the mitochondrial membrane potential and finally led to apoptosis. Our strategy thus paves the way for future mitochondrion-targeted therapy with a variety of biologically active agents.  相似文献   

12.
徐柳  钱晨  朱辰奇  陈志鹏  陈瑞 《化学进展》2018,30(9):1341-1348
构建纳米药物递送系统改善药物的理化性质和生物学性质已经成为现代药物设计研究的热点和重要方向。其中,多肽作为新兴的纳米药物的构筑基元具有良好生物相容性、自组装性与化学可变性等性质,激起了广泛的研究兴趣,为构建新型纳米递送系统提供了崭新的研究方向。本文阐述了自组装多肽在疏水作用、氢键、静电作用、π-π堆积等非共价作用力的综合作用下构建胶束、囊泡、球、纤维等不同形貌的纳米材料;进一步介绍了多肽药物结合物的基本概念以及高载药量、高生物利用度的优势,总结了近年来基于功能性多肽构建纳米药物递送系统的研究;重点介绍了近五年来报道的具有自组装性、增强溶解性、长效性、靶向性、刺激响应性、细胞跨膜性等多种功能的智能多肽纳米药物递送系统。  相似文献   

13.
The delivery of free molecules into the cytoplasm and nucleus by using arginine‐rich cell‐penetrating peptides (CPPs) has been limited to small cargoes, while large cargoes such as proteins are taken up and trapped in endocytic vesicles. Based on recent work, in which we showed that the transduction efficiency of arginine‐rich CPPs can be greatly enhanced by cyclization, the aim was to use cyclic CPPs to transport full‐length proteins, in this study green fluorescent protein (GFP), into the cytosol of living cells. Cyclic and linear CPP–GFP conjugates were obtained by using azido‐functionalized CPPs and an alkyne‐functionalized GFP. Our findings reveal that the cyclic‐CPP–GFP conjugates are internalized into live cells with immediate bioavailability in the cytosol and the nucleus, whereas linear CPP analogues do not confer GFP transduction. This technology expands the application of cyclic CPPs to the efficient transport of functional full‐length proteins into live cells.  相似文献   

14.
In the quest for new antibiotics, two novel engineered cationic antimicrobial peptides (eCAPs) have been rationally designed. WLBU2 and D8 (all 8 valines are the d -enantiomer) efficiently kill both Gram-negative and -positive bacteria, but WLBU2 is toxic and D8 nontoxic to eukaryotic cells. We explore protein secondary structure, location of peptides in six lipid model membranes, changes in membrane structure and pore evidence. We suggest that protein secondary structure is not a critical determinant of bactericidal activity, but that membrane thinning and dual location of WLBU2 and D8 in the membrane headgroup and hydrocarbon region may be important. While neither peptide thins the Gram-negative lipopolysaccharide outer membrane model, both locate deep into its hydrocarbon region where they are primed for self-promoted uptake into the periplasm. The partially α-helical secondary structure of WLBU2 in a red blood cell (RBC) membrane model containing 50 % cholesterol, could play a role in destabilizing this RBC membrane model causing pore formation that is not observed with the D8 random coil, which correlates with RBC hemolysis caused by WLBU2 but not by D8.  相似文献   

15.
Cyclic peptides are important natural products and hold great promise for the identification of new bioactive molecules. The split‐intein‐mediated SICLOPPS technology provides a generic access to fully genetically encoded head‐to‐tail cyclized peptides and large libraries thereof (SICLOPPS=split‐intein circular ligation of peptides and proteins). However, owing to the spontaneous protein splicing reaction, product formation occurs inside cells, making peptide isolation inconvenient and precluding traditional in vitro assays for inhibitor discovery. The design of a genetically encoded, light‐dependent intein using the photocaged tyrosine derivative ortho‐nitrobenzyltyrosine incorporated at an internal, non‐catalytic position is now reported. Stable intein precursors were purified from the E. coli expression host and subsequently subjected to light activation in vitro for both the regular protein splicing format and cyclic peptide production, including the natural product segetalin H as an example. The activity of the intein could also be triggered in living cells.  相似文献   

16.
The design of inhibitors of intracellular protein–protein interactions (PPIs) remains a challenge in chemical biology and drug discovery. We propose a cyclized helix‐loop‐helix (cHLH) peptide as a scaffold for generating cell‐permeable PPI inhibitors through bifunctional grafting: epitope grafting to provide binding activity, and arginine grafting to endow cell‐permeability. To inhibit p53–HDM2 interactions, the p53 epitope was grafted onto the C‐terminal helix and six Arg residues were grafted onto another helix. The designed peptide cHLHp53‐R showed high inhibitory activity for this interaction, and computational analysis suggested a binding mode for HDM2. Confocal microscopy of cells treated with fluorescently labeled cHLHp53‐R revealed cell membrane penetration and cytosolic localization. The peptide inhibited the growth of HCT116 and LnCap cancer cells. This strategy of bifunctional grafting onto a well‐structured peptide scaffold could facilitate the generation of inhibitors for intracellular PPIs.  相似文献   

17.
In this study, a remarkably simple and direct strategy has been successfully developed to selectively label target cysteine residues in fully unprotected peptides and proteins. The strategy is based on the reaction between allenamides and the cysteine thiol, and proceeds swiftly in aqueous medium with excellent selectivity and quantitative conversion, thus forming a stable and irreversible conjugate. The combined simplicity and mildness of the process project allenamide as robust and versatile handles to target cysteines and has potential use in biological systems. Additionally, fluorescent‐labeling studies demonstrated that the installation of a C‐terminal allenamide moiety onto various molecules of interest may supply a new methodology towards the site‐specific labeling of cysteine‐containing proteins. Such a new labeling strategy may thus open a window for its application in the field of life sciences.  相似文献   

18.
宁鹏  程云辉  许宙  丁利  陈茂龙 《化学进展》2020,32(4):497-504
生物活性肽在整个生理系统当中发挥着重要作用,对于生物活性肽的精确分析将有助于进一步开发其功效,然而当前对复杂生物系统中肽的分析依然存在相当大的难度,这是由于肽通常与高浓度蛋白质共存这一特质所造成的,严重降低了色谱中肽的分离效率,并在质谱中抑制肽的峰信号。鉴于此,人们引入金属-有机框架材料对活性肽进行富集分析。金属-有机框架(MOFs),是由金属离子或团簇和有机配体,通过配位键自行组装形成的具有多孔结构的有机-无机杂化材料。由于它们具有框架结构可调、高孔隙率、化学稳定性良好、可再生性、合成过程简单等优点而广泛应用于活性肽富集、气体吸附与分离、传感器、药物缓释与催化反应等领域。本文系统梳理了近年来MOFs材料用于磷酸肽、糖肽和内源肽等活性肽富集的研究进展,在此基础上总结了当前MOFs材料在该领域中存在的局限,并对研究新趋向提出了展望。  相似文献   

19.
Preliminary results from this study show that x-ray microcomputed tomography can be used to image model proteins for bone inducing growth factors. Small quantities (<1 μg protein/mg gelatin) of soybean trypsin inhibitor labeled with either gold nanoparticles or nonradioactive iodine were detected using synchrotron radiation. These results could lead to a new method of measuring the release profile of therapeutic proteins.  相似文献   

20.
规模化蛋白质生物质谱鉴定中肽段氨基端环化修饰现象   总被引:1,自引:1,他引:0  
对蛋白质样品制备中引入的氨基酸残基的一种现象--蛋白质酶切肽段氨基端的环化修饰现象的初步研究结果显示,很多以谷氨酰胺(Q)或氨乙酰化修饰的半胱氨酸(CAM_C)残基起始的肽段会发生氨基端的环化修饰,且修饰反应不完全,在同一样本中修饰与非修饰两种状态常同时存在,并且环化修饰后的肽段的反相色谱保留时间发生延迟.在数据库检索时添加环化修饰,可以提高蛋白质的鉴定成功率.本研究结果为大规模的蛋白质质谱数据解析提供了有价值的参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号