首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic methanol synthesis is one of the major processes in the chemical industry and may grow in importance, as methanol produced from CO2 and sustainably derived H2 are envisioned to play an important role as energy carriers in a future low‐CO2‐emission society. However, despite the widespread use, the reaction mechanism and the nature of the active sites are not fully understood. Here we report that methanol synthesis at commercially applied conditions using the industrial Cu/ZnO/Al2O3 catalyst is dominated by a methanol‐assisted autocatalytic reaction mechanism. We propose that the presence of methanol enables the hydrogenation of surface formate via methyl formate. Autocatalytic acceleration of the reaction is also observed for Cu supported on SiO2 although with low absolute activity, but not for Cu/Al2O3 catalysts. The results illustrate an important example of autocatalysis in heterogeneous catalysis and pave the way for further understanding, improvements, and process optimization of industrial methanol synthesis.  相似文献   

2.
The effect of vanadium addition to Cu/γ-Al2O3 catalyst used in the hydrogenation of CO2 to produce methanol was studied. It was found that the catalytic performance of the Cu-based catalyst improved after V addition. The influence of reaction temperature, space velocity and the molar ratio of H2 to CO2 on the performance of 12%Cu-6%V/γ-Al2Oa catalyst were also studied. The results indicated that the best conditions for reaction were as follows: 240 ℃, 3600 h-1 and a molar ratio of H2 to CO2 the dispersion of the supported CuO species, which resulted in the enhanced catalytic performance of Cu-V/γ-Al2O3 binary catalyst.  相似文献   

3.
CO对CO2加氢合成甲醇的影响   总被引:2,自引:0,他引:2  
甲醇是重要的有机化工原料,同时它也已被确认为尾气污染少、辛烷值高的汽、柴油接烧的洁净燃料和大功率燃料电池的燃料[1].随着世界石油贮量的枯竭,甲醇汽车将快速发展,所以CO2加氢合成甲醇具有广阔的应用前景和深远的理论意义.铜基催化剂上CO2加氢主要存在二个竞争反应[2  相似文献   

4.
The effect of vanadium addition to CU/γ-Al2O3 catalyst used in the hydrogenation of CO2 to produce methanol was studied. It was found that the catalytic performance of the Cu-based catalyst improved after V addition. The influence of reaction temperature, space velocity and the molar ratio of H2 to CO2 on the performance of 12%Cu-6%V/γ-Al2O3 catalyst were also studied. The results indicated that the best conditions for reaction were as follows: 240℃, 3600 h-1 and a molar ratio of H2 to CO2 of 3:1. The results of XRD and TPR characterization demonstrated that the addition of V enhanced the dispersion of the supported CuO species, which resulted in the enhanced catalytic performance of CU-V/γ-Al2O3 binary catalyst.  相似文献   

5.
采用溶胶-凝胶自燃烧法,以柠檬酸为燃料制备了多种CuO-ZnO/Al2O3催化剂.利用N2静态吸附(BET)、X射线衍射(XRD)、扫描电子显微镜(SEM)、X-射线光电子能谱(XPS)和H2程序升温还原(H2-TPR)等方法研究了柠檬酸与硝酸盐比例关系对催化剂物化性质,形貌和还原性能的影响.并将其用于二氧化碳加氢制甲醇反应,考察催化剂的CO2转化率,甲醇选择性以及甲醇时空收率等催化性能.实验结果表明,当柠檬酸用量等于化学计量比时,CuO-ZnO/Al2O3催化剂的催化性能最好,当柠檬酸用量大于化学计量比时,催化性能次之,且变化不大,但当柠檬酸用量小于化学计量比时,催化性能明显降低.这一结果与其物化性质和还原性能有关,当柠檬酸用量等于或大于化学计量比时,催化剂中CuO颗粒较小,分散均匀,且分散度高.  相似文献   

6.
7.
Methanol synthesis by CO2 hydrogenation is attractive in view of avoiding the environmental implications associated with the production of the traditional syngas feedstock and mitigating global warming. However, there still is a lack of efficient catalysts for such alternative processes. Herein, we unveil the high activity, 100 % selectivity, and remarkable stability for 1000 h on stream of In2O3 supported on ZrO2 under industrially relevant conditions. This strongly contrasts to the benchmark Cu‐ZnO‐Al2O3 catalyst, which is unselective and experiences rapid deactivation. In‐depth characterization of the In2O3‐based materials points towards a mechanism rooted in the creation and annihilation of oxygen vacancies as active sites, whose amount can be modulated in situ by co‐feeding CO and boosted through electronic interactions with the zirconia carrier. These results constitute a promising basis for the design of a prospective technology for sustainable methanol production.  相似文献   

8.
Identification of the active copper species, and further illustration of the catalytic mechanism of Cu‐based catalysts is still a challenge because of the mobility and evolution of Cu0 and Cu+ species in the reaction process. Thus, an unprecedentedly stable Cu‐based catalyst was prepared by uniformly embedding Cu nanoparticles in a mesoporous silica shell allowing clarification of the catalytic roles of Cu0 and Cu+ in the dehydrogenation of methanol to methyl formate by combining isotope‐labeling experiment, in situ spectroscopy, and DFT calculations. It is shown that Cu0 sites promote the cleavage of the O?H bond in methanol and of the C?H bond in the reaction intermediates CH3O and H2COOCH3 which is formed from CH3O and HCHO, whereas Cu+ sites cause rapid decomposition of formaldehyde generated on the Cu0 sites into CO and H2.  相似文献   

9.
Based on detailed in situ attenuated total‐reflection–surface‐enhanced IR reflection absorption spectroscopy (ATR‐SEIRAS) studies of the methanol oxidation reaction (MOR) on Ru/Pt thin film and commercial Johnson–Matthey PtRu/C, a revised MOR enhancement mechanism is proposed in which CO on Pt sites is irrelevant but instead Pt‐Ru boundary sites catalyze the oxygen insertion reaction that leads to the formation of formate and enhances the direct reaction pathway.  相似文献   

10.
CO2加氢合成甲醇催化反应中CO的作用   总被引:1,自引:0,他引:1  
研究了铜基催化剂上CO2加氢合成甲醇反应中掺人CO的作用,结果表明,在原料中添加少量CO,甲醇的选择性提高38%,收率提高25%;TPD-MS和TPSR-MS结果表明,CO能抑制催化剂表面起逆水汽变换作用的活性位对CO2的吸附,从而提高了CO2加氢合成甲醇的选抒性.  相似文献   

11.
采用柠檬酸燃烧法制备了CuO-ZnO-ZrO2(CZZ)催化剂,并将其用于CO2加氢合成甲醇反应.按推进剂化学原理对燃烧反应进行了分析,并采用热重-差热分析(TG-DTA)技术记录了其燃烧行为.采用X射线衍射(XRD)、氮吸附、程序升温还原(TPR)及氧化亚氮(N2O)反应吸附技术对制得的催化剂进行了表征.结果表明:柠檬酸燃烧法的燃烧过程比较温和,燃料用量对催化剂物化和催化性能的影响不大,并结合燃烧反应的特点进行了解释.此外,还对三种燃料(柠檬酸、尿素和甘氨酸)的用量与CZZ性能之间的关系进行了比较,表明柠檬酸作燃料具有更好的工艺可控性.柠檬酸燃烧法是一种简单、快速且有效的制备CZZ催化剂的方法.  相似文献   

12.
13.
杨光  李臣芝  陈彤 《分子催化》2015,29(2):143-151
采用并流共沉淀法制备Cu-MnOx催化剂,用于合成气CO/CO2/H2为原料的低温液相甲醇合成.研究了制备条件对Cu-MnOx结构及催化性能的影响,XRD、H2-TPR、CO-TPD表征显示,制备过程中的沉淀p H、煅烧温度等影响Cu-Mn Ox中CuO的分散性、还原性能和对CO的吸附能力.沉淀p H为7、煅烧温度450℃制备的铜锰摩尔比为1∶1的Cu-Mn Ox铜锰相互作用强,CuO分散好,形成的Cu1.5Mn1.5O4晶相利于中间产物甲酸酯的生成,并且其对CO的吸附能力强,H2还原温度适中,利于在预还原条件下生成较多Cu+,因此,表现出最好的催化性能.在170℃、5 MPa反应条件下,以K2CO3为助剂、乙醇为溶剂,碳转率为71.8%,甲醇选择性55.9%,同时生成了较多的碳链增长产物,说明CO在该催化剂上可发生解离吸附,为乙醇等C2+低碳醇的合成提供参考.  相似文献   

14.
Cu/Zn/Al/Mn催化剂上CO/CO2加氢合成甲醇特性研究   总被引:12,自引:5,他引:12  
利用共沉淀法制备了四组分的Cu-Zn-Al-Mn和Cu-Zn-Al-Ce催化剂以及三组分的Cu-Zn-Al催化剂。利用组成H2/CO/CO2/N2=66/27/3/4(体积比)的富CO原料气对催化剂进行了活性评价,并研究了温度、压力和空速等反应条件对催化剂活性的影响。结果发现添加适量的锰助剂能显著提高催化剂的活性和热稳定性。利用SEM和XRD方法进行了催化剂的结构和形貌表征,同样表明锰助剂可以起到阻止CuO晶粒长大和促进CuO分散作用。利用富CO2的生物质原料气体积比为H2/CO/CO2/N2=50/25/20/5对Cu-Zn-Al-Mn催化剂进行的评价表明:Cu-Zn-Al-Mn催化剂上CO/CO2加氢合成甲醇的甲醇产率和选择性均有下降,在试验范围内,甲醇产率下降11%~25%,选择性为93%~95%。  相似文献   

15.
16.
The present Review highlights the challenges and opportunities when using the combination CO2/H2 as a C1 synthon in catalytic reactions and processes. The transformations are classified according to the reduction level and the bond‐forming processes, covering the value chain from high volume basic chemicals to complex molecules, including biologically active substances. Whereas some of these concepts can facilitate the transition of the energy system by harvesting renewable energy into chemical products, others provide options to reduce the environmental impact of chemical production already in today's petrochemical‐based industry. Interdisciplinary fundamental research from chemists and chemical engineers can make important contributions to sustainable development at the interface of the energetic and chemical value chain. The present Review invites the reader to enjoy this exciting area of “catalytic chess” and maybe even to start playing some games in her or his laboratory.  相似文献   

17.
18.
Carbon dioxide may constitute a source of chemicals and fuels if efficient and renewable processes are developed that directly utilize it as feedstock. Two of its reduction products are formic acid and methanol, which have also been proposed as liquid organic chemical carriers in sustainable hydrogen storage. Here we report that both the hydrogenation of carbon dioxide to formic acid and the disproportionation of formic acid into methanol can be realized at ambient temperature and in aqueous, acidic solution, with an iridium catalyst. The formic acid yield is maximized in water without additives, while acidification results in complete (98 %) and selective (96 %) formic acid disproportionation into methanol. These promising features in combination with the low reaction temperatures and the absence of organic solvents and additives are relevant for a sustainable hydrogen/methanol economy.  相似文献   

19.
为减缓温室效应,将CO_(2)转换成高附加值的甲醇是减少CO_(2)排放的有效途径,而高效催化剂是CO_(2)加氢制甲醇反应规模化的关键.可调控合成的具有量子尺寸效应的纳米催化剂在该反应上具有独特的优势.因此我们深入探讨了反应机理,综述了纳米材料在CO_(2)加氢制甲醇中的研究进展,最后给出了高效催化剂可能的发展方向.  相似文献   

20.
残存钠对铜基甲醇合成催化剂活性与稳定性的影响   总被引:4,自引:0,他引:4  
通过控制去离子水洗涤次数,制备了一系列不同钠含量的Cu/ZnO/Al2O3/ZrO2甲醇合成催化剂,研究了钠含量对催化剂活性和稳定性的影响.结果表明,催化剂的活性和稳定性随着残存钠含量的降低而迅速增加.通过X射线衍射、扫描电镜和透射电镜表征发现,残存的钠会加速催化剂的烧结,使晶粒长大,降低催化剂的比表面积.为了得到高活性和高稳定性的铜基甲醇催化剂,必须将催化剂中的钠含量控制在0.5mg/g以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号