首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In studies on the thermodynamics of ligand-protein interactions, it is often assumed that the configurational and conformational entropy of the ligand is zero in the bound state (i.e., the ligand is rigidly fixed in the binding pocket). However, there is little direct experimental evidence for this assumption, and in the case of binding of p-substituted benzenesulfonamide inhibitors to bovine carbonic anhydrase II (BCA II), the observed thermodynamic binding signature derived from isothermal titration calorimetry experiments leads indirectly to the conclusion that a considerable degree of residual entropy remains in the bound ligand. Specifically, the entropy of binding increases with glycine chain length n, and strong evidence exists that this thermodynamic signature is not driven by solvent reorganization. By use of heteronuclear (15)N NMR relaxation measurements in a series (n = 1-6) of (15)N-glycine-enriched ligands, we find that the observed thermodynamic binding signature cannot be explained by residual ligand dynamics in the bound state, but rather results from the indirect influence of ligand chain length on protein dynamics.  相似文献   

2.
Saturation transfer difference (STD) NMR spectroscopy is extensively used to obtain epitope maps of ligands binding to protein receptors, thereby revealing structural details of the interaction, which is key to direct lead optimization efforts in drug discovery. However, it does not give information about the nature of the amino acids surrounding the ligand in the binding pocket. Herein, we report the development of the novel method differential epitope mapping by STD NMR (DEEP‐STD NMR) for identifying the type of protein residues contacting the ligand. The method produces differential epitope maps through 1) differential frequency STD NMR and/or 2) differential solvent (D2O/H2O) STD NMR experiments. The two approaches provide different complementary information on the binding pocket. We demonstrate that DEEP‐STD NMR can be used to readily obtain pharmacophore information on the protein. Furthermore, if the 3D structure of the protein is known, this information also helps in orienting the ligand in the binding pocket.  相似文献   

3.
ACE on a microchip (MC-ACE) is introduced as a fast and reliable method to determine binding affinities. It is based on monitoring the change in the ionic mobility of a receptor upon binding to a ligand, or vice versa. The method is complementary to other standard methods for binding affinity determinations, like isothermal titration calorimetry (ITC), NMR, UV-Vis spectroscopy, etc. and allows for affinity studies of weak to strong binding interactions. The method is attractive since it principally allows for the analysis of the binding affinity of multiple receptors to a given ligand and requires comparatively small quantities of the binding partners (particularly in comparison to affinity measurements on capillary). We demonstrate the applicability of MC-ACE for the determination of the binding affinities between acid-rich diketopiperazine receptors and basic tripeptides in aqueous solution.  相似文献   

4.
Heteronuclear NMR spectroscopy provides a unique way to obtain site‐specific information about protein–ligand interactions. Usually, such studies rely on the availability of isotopically labeled proteins, thereby allowing both editing of the spectra and ligand signals to be filtered out. Herein, we report that the use of the methyl SOFAST correlation experiment enables the determination of site‐specific equilibrium binding constants by using unlabeled proteins. By using the binding of L ‐ and D ‐tryptophan to serum albumin as a test case, we determined very accurate dissociation constants for both the high‐ and low‐affinity sites present at the protein surface. The values of site‐specific dissociation constants were closer to those obtained by isothermal titration calorimetry than those obtained from ligand‐observed methods, such as saturation transfer difference. The possibility of measuring ligand binding to serum albumin at physiological concentrations with unlabeled proteins may open up new perspectives in the field of drug discovery.  相似文献   

5.
We present the use of 1-mm room-temperature probe technology to perform intermolecular interaction studies using chemical shift perturbation methods and saturation transfer difference (STD) spectroscopy using small sample volumes. The use of a small sample volume (5-10 μl) allows for an alternative titration protocol where individual samples are prepared for each titration point, rather than the usual protocol used for a 5-mm probe setup where the ligand is added consecutively to the solution containing the protein or host of interest. This allows for considerable economy in the consumption and cost of the protein and ligand amounts required for interaction studies. For titration experiments, the use of the 1-mm setup consumes less than 10% of the ligand amount required using a 5-mm setup. This is especially significant when complex ligands that are only available in limited quantities, typically because they are obtained from natural sources or through elaborate synthesis efforts, need to be investigated. While the use of smaller volumes does increase the measuring time, we demonstrate that the use of commercial small volume probes allows the study of interactions that would otherwise be impossible to address by NMR.  相似文献   

6.
We recently reported a new method for quantification of protein-ligand interaction by mass spectrometry, titration and H/D exchange (PLIMSTEX) for determining the binding stoichiometry and affinity of a wide range of protein-ligand interactions. Here we describe the method for analyzing the PLIMSTEX titration curves and evaluate the effect of various models on the precision and accuracy for determining binding constants using H/D exchange and a titration. The titration data were fitted using a 1:n protein:ligand sequential binding model, where n is the number of binding sites for the same ligand. An ordinary differential equation was used for the first time in calculating the free ligand concentration from the total ligand concentration. A nonlinear least squares regression method was applied to minimize the error between the calculated and the experimentally measured deuterium shift by varying the unknown parameters. A resampling method and second-order statistics were used to evaluate the uncertainties of the fitting parameters. The interaction of intestinal fatty-acid-binding protein (IFABP) with a fatty-acid carboxylate and that of calmodulin with Ca(2+) are used as two tests. The modeling process described here not only is a new tool for analyzing H/D exchange data acquired by ESI-MS, but also possesses novel aspects in modeling experimental titration data to determine the affinity of ligand binding.  相似文献   

7.
8.
NMR spectroscopy and isothermal titration calorimetry (ITC) are powerful methods to investigate ligand–protein interactions. Here, we present a versatile and sensitive fluorine NMR spectroscopic approach that exploits the 19F nucleus of 19F‐labeled carbohydrates as a sensor to study glycan binding to lectins. Our approach is illustrated with the 11 kDa Cyanovirin‐N, a mannose binding anti‐HIV lectin. Two fluoro‐deoxy sugar derivatives, methyl 2‐deoxy‐2‐fluoro‐α‐D ‐mannopyranosyl‐(1→2)‐α‐D ‐mannopyranoside and methyl 2‐deoxy‐2‐fluoro‐α‐D ‐mannopyranosyl‐(1→2)‐α‐D ‐mannopyranosyl‐(1→2)‐α‐D ‐mannopyranoside were utilized. Binding was studied by 19F NMR spectroscopy of the ligand and 1H–15N HSQC NMR spectroscopy of the protein. The NMR data agree well with those obtained from the equivalent reciprocal and direct ITC titrations. Our study shows that the strategic design of fluorinated ligands and fluorine NMR spectroscopy for ligand screening holds great promise for easy and fast identification of glycan binding, as well as for their use in reporting structural and/or electronic perturbations that ensue upon interaction with a cognate lectin.  相似文献   

9.
Optimization of fragment hits toward high-affinity lead compounds is a crucial aspect of fragment-based drug discovery (FBDD). In the current study, we have successfully optimized a fragment by growing into a ligand-inducible subpocket of the binding site of acetylcholine-binding protein (AChBP). This protein is a soluble homologue of the ligand binding domain (LBD) of Cys-loop receptors. The fragment optimization was monitored with X-ray structures of ligand complexes and systematic thermodynamic analyses using surface plasmon resonance (SPR) biosensor analysis and isothermal titration calorimetry (ITC). Using site-directed mutagenesis and AChBP from different species, we find that specific changes in thermodynamic binding profiles, are indicative of interactions with the ligand-inducible subpocket of AChBP. This study illustrates that thermodynamic analysis provides valuable information on ligand binding modes and is complementary to affinity data when guiding rational structure- and fragment-based discovery approaches.  相似文献   

10.
Host–guest interactions of a molecular tweezer complex 1 with various planar organic molecules including polyaromatic hydrocarbons (PAHs) were investigated by 1D and 2D 1H NMR spectroscopy, UV/Vis absorption and emission titration studies. 2D and DOSY NMR spectroscopies support the sandwiched binding mode based on 1:1 host–guest interactions. The binding constants (KS) of complex 1 for various PAHs were determined by NMR titration studies and the values were found to span up to an order of 104 M ?1 for coronene to no observable interaction for benzene, indicating that the π‐surface area is important for such host–guest interactions. The substituent effect on the host–guest interaction based on the guest series of 9‐substituted anthracenes was also studied. In general, a stronger interaction was observed for the anthracene guest with electron‐donating groups, although steric and π‐conjugation factors cannot be completely excluded. The photophysical responses of complex 1 upon addition of various PAHs were measured by UV/Vis and emission titration studies. The UV/Vis absorption spectra were found to show a drop in absorbance of the metal‐to‐ligand charge‐transfer (MLCT) and ligand‐to‐ligand charge‐transfer (LLCT) admixture band upon addition of various guest molecules to 1 , whereas the emission behavior was found to change differently depending on the guest molecules, showing emission enhancement and/or quenching. It was found that emission quenching occurred either via energy transfer or electron transfer pathway or both, while emission enhancement was caused by the increase in rigidity of complex 1 as a result of host–guest interaction.  相似文献   

11.
Mass spectrometry (MS) with electrospray ionization (ESI) has the capability to measure and detect noncovalent protein-ligand and protein-protein complexes. However, information on the sites of ligand binding is not easily obtained by the ESI-MS methodology. Electron capture dissociation (ECD) favors cleavage of covalent backbone bonds of protein molecules. We show that this characteristic of ECD translates to noncovalent protein-ligand complexes, as covalent backbone bonds of protein complexes are dissociated, but the noncovalent ligand interaction is retained. For the complex formed from 140-residue, 14.5 kDa alpha-synuclein protein, and one molecule of polycationic spermine (202 Da), ECD generates product ions that retain the protein-spermine noncovalent interaction. Spermine binding is localized to residues 106-138; the ECD data are consistent with previous solution NMR studies. Our studies suggest that ECD mass spectrometry can be used to determine directly the sites of ligand binding to protein targets.  相似文献   

12.
Heteronuclear NMR spectroscopy provides a unique way to obtain site-specific information about protein-ligand interactions. Usually, such studies rely on the availability of isotopically labeled proteins, thereby allowing both editing of the spectra and ligand signals to be filtered out. Herein, we report that the use of the methyl SOFAST correlation experiment enables the determination of site-specific equilibrium binding constants by using unlabeled proteins. By using the binding of L- and D-tryptophan to serum albumin as a test case, we determined very accurate dissociation constants for both the high- and low-affinity sites present at the protein surface. The values of site-specific dissociation constants were closer to those obtained by isothermal titration calorimetry than those obtained from ligand-observed methods, such as saturation transfer difference. The possibility of measuring ligand binding to serum albumin at physiological concentrations with unlabeled proteins may open up new perspectives in the field of drug discovery.  相似文献   

13.
In the present study we examine the thermodynamics of binding of two related pyrazine-derived ligands to the major urinary protein, MUP-I, using a combination of isothermal titration calorimetry (ITC), X-ray crystallography, and NMR backbone (15)N and methyl side-chain (2)H relaxation measurements. Global thermodynamics data derived from ITC indicate that binding is driven by favorable enthalpic contributions, rather than the classical entropy-driven hydrophobic effect. Unfavorable entropic contributions from the protein backbone and side-chain residues in the vicinity of the binding pocket are partially offset by favorable entropic contributions at adjacent positions, suggesting a "conformational relay" mechanism whereby increased rigidity of residues on ligand binding are accompanied by increased conformational freedom of side chains in adjacent positions. The principal driving force governing ligand affinity and specificity can be attributed to solvent-driven enthalpic effects from desolvation of the protein binding pocket.  相似文献   

14.
Recent studies on amino acid occurrence in protein binding sites suggest that only a reduced number of residues are responsible for most interaction energy in protein-protein and protein-ligand interactions. Above all, tryptophan (Trp) seems to be the most frequent residue in protein's hot spots. Here we report a novel, efficient, and cost-effective method to selectively incorporate specific isotope labels into the side chains of Trp residues in recombinant proteins. We show that the method proposed allows selective NMR observation of Trp side chains that enables studies of ligand binding, protein-protein interactions, hydrogen binding, protein folding, and side chain dynamics. Examples with the protein BIR3 will be given.  相似文献   

15.
A novel method based on diffusion NMR for the epitope mapping of ligand binding is presented. The intermolecular NOE builds up during a long diffusion period and creates a deviation from the linearity. The ligand proton nearest the protein generates the strongest NOE from protein during the diffusion period and has the largest deviation. Therefore, this diffusion artifact can be used to characterize the ligand binding epitope. The concept was investigated using dihydrofolate reductase (DHFR) and its ligand trimethoprim (TMP), and the epitope map of TMP on DHFR generated with this method is in excellent agreement with the structural and dynamic studies by crystallography and NMR, as well as the medicinal chemistry results.  相似文献   

16.
A novel approach for detection of ligand binding to a protein in solid samples is described. Hydrated precipitates of the anti-apoptotic protein Bcl-xL show well-resolved (13)C-(13)C 2D solid-state NMR spectra that allow site-specific assignment of resonances for many residues in uniformly (13)C-enriched samples. Binding of a small peptide or drug-like organic molecule leads to changes in the chemical shift of resonances from multiple residues in the protein that can be monitored to characterize binding. Differential chemical shifts can be used to distinguish between direct protein-ligand contacts and small conformational changes of the protein induced by ligand binding. The agreement with prior solution-state NMR results indicates that the binding pocket in solid and liquid samples is similar for this protein. Advantages of different labeling schemes involving selective (13)C enrichment of methyl groups of Ala, Val, Leu, and Ile (Cdelta1) for characterizing protein-ligand interactions are also discussed. It is demonstrated that high-resolution solid-state NMR spectroscopy on uniformly or extensively (13)C-enriched samples has the potential to screen proteins of moderate size ( approximately 20 kDa) for ligand binding as hydrated solids. The results presented here suggest the possibility of using solid-state NMR to study ligand binding in proteins not amenable to solution NMR.  相似文献   

17.
The direct evaluation of dissociation constants (KD) from the variation of saturation transfer difference (STD) NMR spectroscopy values with the receptor–ligand ratio is not feasible due to the complex dependence of STD intensities on the spectral properties of the observed signals. Indirect evaluation, by competition experiments, allows the determination of KD, as long as a ligand of known affinity is available for the protein under study. Herein, we present a novel protocol based on STD NMR spectroscopy for the direct measurements of receptor–ligand dissociation constants (KD) from single‐ligand titration experiments. The influence of several experimental factors on STD values has been studied in detail, confirming the marked impact on standard determinations of protein–ligand affinities by STD NMR spectroscopy. These factors, namely, STD saturation time, ligand residence time in the complex, and the intensity of the signal, affect the accumulation of saturation in the free ligand by processes closely related to fast protein–ligand rebinding and longitudinal relaxation of the ligand signals. The proposed method avoids the dependence of the magnitudes of ligand STD signals at a given saturation time on spurious factors by constructing the binding isotherms using the initial growth rates of the STD amplification factors, in a similar way to the use of NOE growing rates to estimate cross relaxation rates for distance evaluations. Herein, it is demonstrated that the effects of these factors are cancelled out by analyzing the protein–ligand association curve using STD values at the limit of zero saturation time, when virtually no ligand rebinding or relaxation takes place. The approach is validated for two well‐studied protein–ligand systems: the binding of the saccharides GlcNAc and GlcNAcβ1,4GlcNAc (chitobiose) to the wheat germ agglutinin (WGA) lectin, and the interaction of the amino acid L ‐tryptophan to bovine serum albumin (BSA). In all cases, the experimental KD measured under different experimental conditions converged to the thermodynamic values. The proposed protocol allows accurate determinations of protein–ligand dissociation constants, extending the applicability of the STD NMR spectroscopy for affinity measurements, which is of particular relevance for those proteins for which a ligand of known affinity is not available.  相似文献   

18.
Targeting protein surfaces involved in protein–protein interactions by using supramolecular chemistry is a rapidly growing field. NMR spectroscopy is the method of choice to map ligand‐binding sites with single‐residue resolution by amide chemical shift perturbation and line broadening. However, large aromatic ligands affect NMR signals over a greater distance, and the binding site cannot be determined unambiguously by relying on backbone signals only. We herein employed Lys‐ and Arg‐specific H2(C)N NMR experiments to directly observe the side‐chain atoms in close contact with the ligand, for which the largest changes in the NMR signals are expected. The binding of Lys‐ and Arg‐specific supramolecular tweezers and a calixarene to two model proteins was studied. The H2(C)N spectra track the terminal CH2 groups of all Lys and Arg residues, revealing significant differences in their binding kinetics and chemical shift perturbation, and can be used to clearly pinpoint the order of ligand binding.  相似文献   

19.
The STD NMR technique has originally been described as a tool for screening large compound libraries to identify the lead compounds that are specific to target proteins of interest. The application of this technique in the qualitative epitope mapping of ligands weakly binding to proteins, virus capsid shells, and nucleic acids has also been described. Here we describe the application of the STD NMR intensity-restrained CORCEMA optimization (SICO) procedure for refining the bound conformation of UDP-galactose in galactosyltransferase complex using STD NMR intensities recorded at 500 MHz as the experimental constraints. A comparison of the SICO structure for the bound UDP-galactose in solution with that in the crystal structure for this complex shows some differences in ligand torsion angles and V253 side-chain orientation in the protein. This work describes the first application of an STD NMR intensity-restrained CORCEMA optimization procedure for refining the torsion angles of a bound ligand structure. This method is likely to be useful in structure-based drug design programs since most initial lead compounds generally exhibit weak affinity (millimolar to micromolar) to target proteins of pharmaceutical interest, and the bound conformation of these lead compounds in the protein binding pocket can be determined by the CORCEMA-ST refinement.  相似文献   

20.
We have devised methods in which cross-polarization magic-angle spinning (CP-MAS) solid-state NMR is exploited to measure rigorous parameters for binding of (13)C-labeled substrates to membrane transport proteins. The methods were applied to two proteins from Escherichia coli: a nucleoside transporter, NupC, and a glucuronide transporter, GusB. A substantial signal for the binding of methyl [1-(13)C]-beta-d-glucuronide to GusB overexpressed in native membranes was achieved with a sample that contained as little as 20 nmol of GusB protein. The data were fitted to yield a K(D) value of 4.17 mM for the labeled ligand and 0.42 mM for an unlabeled ligand, p-nitrophenyl beta-d-glucuronide, which displaced the labeled compound. CP-MAS was also used to measure binding of [1'-(13)C]uridine to overexpressed NupC. The spectrum of NupC-enriched membranes containing [1'-(13)C]uridine exhibited a large peak from substrate bound to undefined sites other than the transport site, which obscured the signal from substrate bound to NupC. In a novel application of a cross-polarization/polarization-inversion (CPPI) NMR experiment, the signal from undefined binding was eliminated by use of appropriate inversion pulse lengths. By use of CPPI in a titration experiment, a K(D) value of 2.6 mM was determined for uridine bound to NupC. These approaches are broadly applicable to quantifying binding of substrates, inhibitors, drugs, and antibiotics to numerous membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号