首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure evolution of twinned Ru nanoparticles supported on carbon nanotubes rearranging into Ru single nanocrystals under the microwave irradiation and the exposed surface of Ru single crystals were observed, which provided new insights into synthesis and application of metal nanoparticle catalysts.  相似文献   

2.
The site isolation strategy has been employed in thermal catalytic acetylene semihydrogenation to inhibit overhydrogenation and C−C coupling. However, there is a dearth of analogous investigations in electrocatalytic systems. In this work, density functional theory (DFT) simulations demonstrate that isolated Cu metal sites have higher energy barriers on overhydrogenation and C−C coupling. Following this result, we develop Cu single-atom catalysts highly dispersed on nitrogen-doped carbon matrix, which exhibit high ethylene selectivity (>80 % Faradaic efficiency for ethylene, <1 % Faradaic efficiency for C4, and no ethane) at high concentrations of acetylene. The superior performance observed in the electrocatalytic selective hydrogenation of acetylene can be attributed to the weak adsorption of ethylene intermediates and highly energy barriers on C−C coupling at isolated sites, as confirmed by both DFT calculations and experimental results. This study provides a comprehensive understanding of the isolated sites inhibiting the side reactions of electrocatalytic acetylene semihydrogenation.  相似文献   

3.
因为贵金属的价格比较高,并且很多催化反应主要发生在载体和金属接触的周围原子,所以减少贵金属的粒径对于提高金属原子利用率是非常可取的.原子利用率的最高极限就是形成单原子催化活性中心,然而合成稳定的单原子金属催化剂是一个巨大的挑战,因为单原子金属极易聚合成较大的金属颗粒.尽管存在着很大的困难,合成稳定的单原子金属还是可能的.研究表明,单原子金属容易镶嵌在表面能量最高的活性位上,以降低金属和载体的总能量,使之达到最稳定状态.随着金属的负载量增加,以此单原子金属为"晶种"将形成金属纳米粒子.根据这一原理,我们通过简单热扩散方法在HMO表面把Ag纳米粒子"拆分"成单个的Ag原子,并稳定地镶嵌在由HMO四个氧形成的空穴上(HMO的孔道口),使体系的能量降到最低.我们通过原位X射线衍射(XRD)、扩展X射线吸收精细结构光谱(EXAFS)和电子显微镜照片(TEM)详细证明了这种自上而下的合成过程,并通过X射线吸收近边结构光谱(XANES)、氢气程序升温还原(H2-TPR)、CO吸附实验等表征手段和理论计算说明了诱导这一过程的原因.首先我们合成了具有高比表面积的Hollandite型二氧化锰(HMO)纳米颗粒,并且在上面负载纳米银颗粒.TEM数据表明经过焙烧纳米银颗粒消失,形成单原子分散在HMO表面.原位XRD的结果表明随着焙烧温度的升高,银颗粒的衍射峰强度逐渐降低,最后消失,说明纳米银颗粒随着温度的升高逐渐减少,最后达到银高分散的状态.通过对Ag(111)衍射峰强度进行分析,我们发现当温度低于150 oC时,Ag(111)衍射峰强度基本保持不变,说明银颗粒没有变化.当温度高于150 oC时,Ag(111)衍射峰强度开始减小,并且减小的程度随温度的升高而变大.当温度高于260 oC时,Ag(111)衍射峰消失.为了更好的研究这个过程,我们分别在150,200,350 oC焙烧银颗粒的样品,并测试了它们的EXAFS谱.结果表明随着焙烧温度的升高,银和银之间配位数减小,意味着银颗粒的减小.350 oC焙烧样品的EXAFS谱在银原子散射的0.28–0.30 nm范围内没有吸收峰,说明银原子在HMO表面高度分散.然后我们通过XANES谱和理论计算证明了银和载体表面晶格氧的相互作用导致银的前线轨道的电子重新发生排布,从而诱导了整个自上向下的合成过程.最后活性测试表明,单原子银催化剂在甲醛催化氧化中表现出最好的催化活性,并简单研究了单原子催化氧化甲醛的机理.因此这种合成策略有两个重要的作用:(1)增加催化活性位的数量;(2)单原子催化剂的合成有利于催化反应机理的研究,比如甲醛催化氧化.  相似文献   

4.
采用非晶态络合物法制备了La0.9Cu0.1MnO3和LaCoO3钙钛矿催化剂, 并利用固定化溶胶工艺合成了Pt纳米粒子负载的Pt/La0.9Cu0.1MnO3和Pt/LaCoO3复合催化剂. 通过透射电镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)等手段对催化剂的微观结构、形貌及Pt的价态进行了研究; 考察了催化剂的CO催化氧化发光性能. 结果表明, 若La0.9Cu0.1MnO3催化剂表面上负载的Pt纳米颗粒形成团聚, 则在其CO催化氧化发光谱中出现发光峰分裂的现象, 而在Pt纳米颗粒分散较好的Pt/LaCoO3体系中却没有出现这一情况. 因此可以利用CO催化发光谱来初步判断贵金属纳米颗粒在载体表面的分散状态.  相似文献   

5.
Supported single‐atom catalysts have been emerging as promising materials in a variety of energy catalysis applications. However, studying the role of metal–support interactions at the molecular level remains a major challenge, primarily due to the lack of precise atomic structures. In this work, by replacing the frequently used TiO2 support with its molecular analogue, titanium‐oxo cluster (TOC), we successfully produced a new kind of Ti‐O material doped with single silver sites. The as‐obtained Ag10Ti28 cluster, containing four exposed and six embedded Ag sites, is the largest noble‐metal‐doped Ti‐O cluster reported to date. Density functional theory (DFT) calculations show that the Ag10Ti28 core exhibits properties distinct from those of metallic Ag‐based materials. This Ti‐O material doped with single Ag sites presents a high ?d and moderate CO binding capacity comparable to that of metallic Cu‐based catalysts, suggesting that it might display different catalytic performance from the common Ag‐based catalysts, for example, for CO2 reduction. These results prove that the synergism of active surface metal atoms and the Ti‐O cluster support result in unique physical properties, which might open a new direction for single‐atom‐included catalysts.  相似文献   

6.
Biomass conversion has been developed by testing various metal based carbon catalysts. Most of the reported catalysts either use very expensive metals or support that provides lower selectivity. In this context, we fabricated new carbon based nanocomposites and studied their catalytic application for furfural reduction – a promising biomass derived molecule. The mono (Cu, Co and Ni) and bimetallic (CuCo and CuNi) nanoparticle supported on commercial graphite (CG) were prepared and characterized by TEM, EDS, XRD and Raman spectroscopy. The analysis revealed that the nanocomposites are made up of metallic nanoparticles with average particle size of 5–13 nm on the graphite matrix. The obtained results indicated that the Cu+Ni@CG catalyst exhibited high catalytic activity for furfural reduction, thus leaving Cu+Ni as the finest and cost effective catalyst for this study.  相似文献   

7.
The semihydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry. Unfortunately, state-of-the-art heterogeneous catalysts hardly achieve high turnover frequencies (TOFs) simultaneously with almost full conversion, excellent selectivity, and good stability. Here, we used metal–organic frameworks (MOFs) containing Zr metal nodes (“UiO”) with tunable wettability and electron-withdrawing ability as activity accelerators for the semihydrogenation of alkynes catalyzed by sandwiched palladium nanoparticles (Pd NPs). Impressively, the porous hydrophobic UiO support not only leads to an enrichment of phenylacetylene around the Pd NPs but also renders the Pd surfaces more electron-deficient, which leads to a remarkable catalysis performance, including an exceptionally high TOF of 13835 h−1, 100 % phenylacetylene conversion 93.1 % selectivity towards styrene, and no activity decay after successive catalytic cycles. The strategy of using molecularly tailored supports is universal for boosting the selective semihydrogenation of various terminal and internal alkynes.  相似文献   

8.
万紫轩  王超辉  康雄武 《电化学》2022,28(10):2214005
过渡金属磷化物(TMP)是一种用于碱性条件下析氢反应(HER)的有效催化剂, 然而其活性严重受限于水解离步。本文通过在泡沫铜(CF)上生长Cu(OH)2纳米阵列, RuCl3溶液浸泡和磷酸化, 制备了一种具有较大比表面积和适当Ru掺杂的Ru-Cu3P自支撑催化剂(Ru-Cu3P/CF)。作为一种优良的HER催化剂,在电流密度为10 mA·cm-2时, 其过电位为95.6 mV, 比Cu3P/CF降低149.4 mV。其决速步由Volmer向Heyrovsky机制过渡。HER性能的提高可以归因于Ru掺杂磷化铜促进水解离过程,以及Cu(OH)2纳米阵列衍生Cu3P纳米结构具有更高的电化学活性面积, 从而保证了更多的活性位点。本论文突出了具有空的d轨道的金属掺杂促进水解离的重要性,为高性能电解水析氢催化剂的设计提供了新思路。  相似文献   

9.
The metal surfaces tend to be oxidized in air through dissociation of the O−O bond of oxygen to reduce the performances in various fields. Although several ligand modification routes have alleviated the oxidation of bulky metal surfaces, it is still a challenge for the oxidation resistance of small-size metal nanoparticles. Herein, we fixed the small-size Pd nanoparticles in tin-contained MFI zeolite crystals, where the tin acts as an electron donor to efficiently hinder the oxidation of Pd by weakening the adsorption of molecular oxygen and suppressing the O−O cleavage. This oxidation-resistant Pd catalyst exhibited superior performance in directly synthesizing hydrogen peroxide from hydrogen and oxygen, with the productivity of hydrogen peroxide at ≈10,170 mmol gPd−1 h−1, steadily outperforming the catalysts tested previously. This work leads to the hypothesis that tin is an electron donor to realize oxidation-resistant Pd within zeolite crystals for efficient catalysis to overcome the limitation of generally supported Pd catalysts and further motivates the use of oxidation-resistant metal nanoparticles in various fields.  相似文献   

10.
A new method for the highly stereoselective cis semihydrogenation of internal alkynes, semihydrogenation of terminal alkynes, reduction of dienes to alkenes, and reduction of alkynes and alkenes to alkanes is described based on in situ generated both Ni(0) nanoparticles and molecular hydrogen.  相似文献   

11.
We investigated the decomposition and (partial) oxidation of methanol on Pd based catalysts in an integrated attempt, simultaneously bridging both the pressure and the materials gap. Combined studies were performed on well-defined Pd model catalysts based on ordered Al(2)O(3) and Fe(3)O(4) thin films, on well-defined particles supported on powders and on Pd single crystals. The interaction of Pd nanoparticles and Pd(111) with CH(3)OH and CH(3)OH/O(2) mixtures was examined from ultrahigh vacuum conditions up to ambient pressures, utilizing a broad range of surface specific vibrational spectroscopies which included IRAS, TR-IRAS, PM-IRAS, SFG, and DRIFTS. Detailed kinetic studies in the low pressure region were performed by molecular beam methods, providing comprehensive insights into the microkinetics of the reaction system. The underlying microscopic processes were studied theoretically on the basis of specially designed 3-D nanocluster models containing approximately 10(2) metal atoms. The efficiency of this novel modelling approach was demonstrated by rationalizing and complementing pertinent experimental results. In order to connect these results to the behavior under ambient conditions, kinetic and spectroscopic investigations were performed in reaction cells and lab reactors. Specifically, we focused on (1) particle size and structure dependent effects in methanol oxidation and decomposition, (2) support effects and their relation to activity and selectivity, (3) the influence of poisons such as carbon, and (4) the role of oxide and surface oxide formation on Pd nanoparticles.  相似文献   

12.
共价有机框架材料在多相催化领域的研究进展(英文)   总被引:1,自引:0,他引:1  
胡慧  闫欠欠  格日乐  高艳安 《催化学报》2018,39(7):1167-1179
共价有机框架(COFs)材料是近年来在拓扑学基础上发展起来的一类新型有机多孔聚合物,是有机单体通过可逆共价键连接而形成的晶型多孔材料,具有拓扑结构"可设计"、比表面积大、结构规整、孔道均一、孔径可调节以及易于修饰和功能化等优点.与金属有机框架材料(MOFs)相比,由于COFs是以共价键连接形成空间网络结构,具有较好的热稳定性和化学稳定性,又被称为"有机分子筛".COFs的构筑单体为有机小分子,有机小分子来源广泛而且种类繁多,使得构筑单体多样化,便于通过构筑单体来调控目标材料的结构和功能.自2005年首次报道以来,COFs以其独特的结构和优越的性能,吸引了广大科研工作者的极大兴趣,对其结构设计、可控合成、结构解析以及功能探索成为了研究热点,在气体吸附与分离、光电材料等领域展现出了广阔的应用前景.特别是在催化领域,由于COFs材料的多孔性、敞开的孔道结构、良好的稳定性以及易于修饰的特点,采用COFs作为催化剂以及催化剂载体受到了人们普遍的关注.作为催化剂,COFs可分为本征型催化剂和负载型催化剂.本征型催化剂的设计方法是基于"自下而上"策略将催化活性中心嵌入材料骨架之中;负载型催化剂的设计方法是以COFs为载体,通过后修饰方式负载金属颗粒或离子来构建多相催化剂.本征型COFs催化剂是在分子水平上引入催化活性中心,具有活性位点均匀分散、数量可控的特点,而且COFs规整均一的孔道结构有利于底物的传质,也为择形催化提供了可能;负载型催化剂通过后修饰方式引入催化活性中心,由于COFs以共价键连接,催化剂稳定性较高.COFs载体具有较大的比表面积,使得催化活性位点分散性好,也有利于底物与催化活性位点的结合.本文综述了COFs作为多相催化剂在催化领域的发展状况,按照COFs引入催化活性位点的类别,如单催化位点、双催化位点以及负载的金属纳米粒子进行了细致的阐述,重点讨论了COFs催化剂的设计理念、制备方式、功能化策略、材料的稳定性、催化活性以及选择性等内容.此外,对COFs作为光催化剂以及电催化剂方面的研究也进行了详细的介绍.最后,我们讨论了COFs在未来催化领域所面临的问题及挑战,并展望了COFs在超分子催化以及酶催化等方面的应用前景.  相似文献   

13.
单原子催化剂由于能最大限度地利用贵金属以及其独特的催化性能而引起了人们的兴趣.基于其表面原子性质,CeO2是稳定单金属原子最常用的载体之一.一旦金属含量超过其负载的载体容量,就会形成金属纳米粒子,因而许多单原子催化剂的金属含量受限.目前,还没有直接的测量方法来确定载体稳定单个原子的容量.本文开发了一种基于纳米颗粒的技术,即通过将Ru纳米颗粒重新分散成单个原子,并利用Ru单原子和纳米颗粒在CO2加氢反应中的不同催化性能,从而确定该容量.该方法避免了湿浸初期反离子对金属负载的影响,最终可应用于多种不同的金属.结果表明,该技术可跟踪氧空位浓度和表面氧含量的变化趋势,有望成为一种定量测定载体单原子稳定容量的新方法.  相似文献   

14.
负载型Pd,Pt,Au等贵金属催化剂由于具有较高活性而被广泛应用于选择性加氢催化领域,但资源稀缺、价格昂贵等问题严重制约了其在催化领域的长远发展.目前大量研究结果表明,非贵金属催化剂也具有较高的选择性催化加氢能力,在已被报道的非贵金属加氢催化剂中,铜基催化剂由于在选择性加氢反应中表现出较高加氢选择性和活性引起了人们的广泛关注.然而,早期研究的负载型铜基催化剂普遍存在催化稳定性较低的问题,所以提高铜基催化剂的使用寿命成为了问题关键.本文以铜基有机金属框架HKUST-1作为合成目标催化剂的前驱体,首先探究了水热合成条件对HKUST-1合成结构完整性及结晶度的影响,再通过精确调控HKUST-1的原位碳化过程,利用金属有机框架高温分解自还原行为,成功制备出了等级孔碳负载的高分散铜基催化剂,并将所制备的催化剂应用于1,3-丁二烯选择性加氢反应中.扫描电子显微镜、高分辨透射电子显微镜、X射线衍射、氮气吸脱附、傅里叶红外吸收光谱、X射线光电子能谱等技术用来表征了碳化前后催化剂载体结构的变化,铜粒子尺寸、价态及其在载体中分布的变化.文中也深入探究了以上因素对催化剂选择性催化加氢性能的影响.研究表明:120℃水热合成18 h能获得尺寸在15μm左右,结晶度高且形貌规整的HKUST-1前驱体.随后通过合理地控制金属有机框架分解过程,可实现对碳载体的等级孔结构和活性铜纳米粒子的分散程度的精确调控,获得高效等级孔载体结构和高分散铜位点的催化剂.不仅如此,通过一步碳化自还原HKUST-1制备的等级孔碳负载Cu的催化性能表现出对碳化温度高度的关联性.其催化活性随碳化处理温度的升高呈现先增强后减弱的趋势,但所有获得的催化剂对单烯烃都具有很高的选择性(>98%).特别地,本文发现在600℃碳化合成的催化剂在低温75℃反应可实现对1,3-丁二烯的100%转化,对丁烯的选择性为100%.同时,该催化剂在恒温75℃下持续反应120 h以上,其对丁二烯转化率和对丁烯选择性依然保持100%,表现出了超高的催化稳定性和潜在的商用价值.本文展示了通过简单地调控金属有机骨架的碳化过程是获得具有优异选择性催化加氢性能的铜基催化剂的有效途径.  相似文献   

15.
The semihydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry. Unfortunately, state‐of‐the‐art heterogeneous catalysts hardly achieve high turnover frequencies (TOFs) simultaneously with almost full conversion, excellent selectivity, and good stability. Here, we used metal–organic frameworks (MOFs) containing Zr metal nodes (“UiO”) with tunable wettability and electron‐withdrawing ability as activity accelerators for the semihydrogenation of alkynes catalyzed by sandwiched palladium nanoparticles (Pd NPs). Impressively, the porous hydrophobic UiO support not only leads to an enrichment of phenylacetylene around the Pd NPs but also renders the Pd surfaces more electron‐deficient, which leads to a remarkable catalysis performance, including an exceptionally high TOF of 13835 h?1, 100 % phenylacetylene conversion 93.1 % selectivity towards styrene, and no activity decay after successive catalytic cycles. The strategy of using molecularly tailored supports is universal for boosting the selective semihydrogenation of various terminal and internal alkynes.  相似文献   

16.
The solvent‐free selective oxidation of alcohols to aldehydes with molecular oxygen is highly attractive yet challenging. Interfacial sites between a metal and an oxide support are crucial in determining the activity and selectivity of such heterogeneous catalysts. Herein, we demonstrate that the use of supported single‐atom catalysts (SACs) leads to high activity and selectivity in this reaction. The significantly increased number of interfacial sites, resulting from the presence of individually dispersed metal atoms on the support, renders SACs one or two orders of magnitude more active than the corresponding nanoparticle (NP) catalysts. Lattice oxygen atoms activated at interfacial sites were found to be more selective than O2 activated on metal NPs in oxidizing the alcohol substrate. This work demonstrates for the first time that the number of interfacial sites is maximized in SACs, providing a new avenue for improving catalytic performance by developing appropriate SACs for alcohol oxidation and other reactions occurring at metal–support interfacial sites.  相似文献   

17.
The solvent‐free selective oxidation of alcohols to aldehydes with molecular oxygen is highly attractive yet challenging. Interfacial sites between a metal and an oxide support are crucial in determining the activity and selectivity of such heterogeneous catalysts. Herein, we demonstrate that the use of supported single‐atom catalysts (SACs) leads to high activity and selectivity in this reaction. The significantly increased number of interfacial sites, resulting from the presence of individually dispersed metal atoms on the support, renders SACs one or two orders of magnitude more active than the corresponding nanoparticle (NP) catalysts. Lattice oxygen atoms activated at interfacial sites were found to be more selective than O2 activated on metal NPs in oxidizing the alcohol substrate. This work demonstrates for the first time that the number of interfacial sites is maximized in SACs, providing a new avenue for improving catalytic performance by developing appropriate SACs for alcohol oxidation and other reactions occurring at metal–support interfacial sites.  相似文献   

18.
Using model catalysts, we demonstrate that CO desorption from Ru surfaces can be switched from that typical of single crystal surfaces to one more characteristic of supported nanoparticles. First, the CO desorption behaviour from Ru nanoparticles supported on highly oriented pyrolytic graphite was studied. Both mass-selected and thermally evaporated nanoparticles were deposited. TPD spectra from the mass-selected nanoparticles exhibit a desorption peak located around 410 K with a broad shoulder extending from around 480 K to 600 K, while spectra obtained from thermally evaporated nanoparticles exhibit a single broad feature from ~350 K to ~450 K. A room temperature deposited 50 ? thick Ru film displays a characteristic nanoparticle-like spectrum with a broad desorption feature at ~420 K and a shoulder extending from ~450 K to ~600 K. Subsequent annealing of this film at 900 K produced a polycrystalline morphology of flat Ru(001) terraces separated by monatomic steps. The CO desorption spectrum from this surface resembles that obtained on single crystal Ru(001) with two large desorption features located at 390 K and 450 K due to molecular desorption from terrace sites, and a much smaller peak at ~530 K due to desorption of dissociatively adsorbed CO at step sites. In a second experiment, ion sputtering was used to create surface defects on a Ru(0 1 54) single crystal surface. A gradual shift away from the desorption spectrum typical of a Ru(001) surface towards one resembling desorption from supported Ru nanoparticles was observed with increasing sputter time.  相似文献   

19.
The adsorption of molecules on metal nanoparticles can be sterically controlled through the use of zeolite crystals, which enhances the product selectivity in hydrogenations of reactants with more than one reducible group. Key to this success was the fixation of Pd nanoparticles inside Beta zeolite crystals to form a defined structure (Pd@Beta). In the hydrogenation of substituted nitroarenes with multiple reducible groups as a model reaction, the Pd@Beta catalyst exhibited superior selectivity for hydrogenation of the nitro group, outperforming both conventional Pd nanoparticles supported on zeolite crystals and a commercial Pd/C catalyst. The extraordinary selectivity of Pd@Beta was attributed to the sterically selective adsorption of the nitroarenes on the Pd nanoparticles controlled by the zeolite micropores, as elucidated by competitive adsorption and adsorbate displacement tests. Importantly, this strategy is general and was extended to the synthesis of selective Pt and Ru catalysts by fixation inside Beta and mordenite zeolites.  相似文献   

20.
Selective hydrogenation of nitriles and alkynes is crucial considering the vast applications of reduced products in industries and in the synthesis of bioactive compounds. Particularly, the late 3d transition metal catalysts (manganese, iron, cobalt, nickel and copper) have shown promising activity for the hydrogenation of nitriles to primary amines, secondary amines and imines. Similarly, semihydrogenation of alkynes to E‐ and Z‐alkenes by 3d metals is adequately successful both via the transfer hydrogenation and by using molecular hydrogen. The emergence of 3d transition metals in the selective synthesis of industrially relevant amines, imines and alkenes makes this protocol more attractive. Herein, we provide a concise overview on the late 3d transition metal‐catalyzed hydrogenation of nitriles to amines and imines as well as semihydrogenation of alkynes to alkenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号