首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study employs density functional theory (DFT) and time-dependent density functional theory (TD-DFT) to investigate a series of cyclometallated Ir(III) complexes for their application as OLED light-emitting materials, including (dtp)2Ir(dpm), (mmpyp)2Ir(dpm), (dtp)2Ir(tpip), (mmpyp)2Ir(tpip), (dtp)2Ir(pic), and (mmpyp)2Ir(pic). Their geometries, frontier molecular orbital properties, ionization potential, electron affinity, absorption and emission spectra, and spin-orbit coupling properties have been analyzed respectively. Through comparison, we have identified complexes with reduced efficiency roll-off and enhanced kISC.  相似文献   

2.
[M(SRaaiNR′)Cl3] (M = Rh(III), Ir(III) and SRaaiNR′ = 1-alkyl-2-{(o-thioalkyl)phenylazo}imidazole) complexes are described in this article. The single crystal X-ray structure of one of the complexes, [Rh(SMeaaiNEt)Cl3] (3b), shows a tridentate chelation of SMeaaiNEt via N(imidazole), N(azo) and S(thioether) donor centres. Spectral characterization has been done by IR, UV–Vis and 1H NMR data. The electronic structure, redox properties and spectra are well supported by DFT and TDDFT computation on the complexes.  相似文献   

3.
The structures and electronic properties of a series of cyclometalated Ir(III) complexes with substituted dppz ancillary ligand (dppz: dipyrido[3,2-a:2′,3′-c]phenazine) including tert-butyl, pyrrolidine ring, and alkoxys substituents as donor group have been theoretically study. With the aim of highlight the attractive qualities of each system for their use as luminescent material, the effects of the electron-donor substituents onto dppz was evaluated on the structural, charge transport, absorption, and phosphorescent properties. The effect of the substituent was studied on the modulation of the bright and dark triplet states. Main results show that ortho-methoxy and tert-butyl substituents act as lower electron-donating groups, then, efficient electron donation ability was displayed with alkoxy (ethoxy and propoxy) substituents. The best performance was found in a complex with pyrrolidine ring according since their phosphorescence is favored, highlighting their larger electric transition dipole moment value, proposing this system as potential candidate to LEC technology.  相似文献   

4.
Two novel dendrimer-like blue-emitting dinuclear cyclometalated iridium (III) complexes, namely (DNaTPA)2DBF(FIrpic)2 and (DPyTPA)2DBF(FIrpic)2, have been successfully synthesized and characterized. In which FIrpic is an iridium (III) bis[(4,6-difluorophenyl)pyridinato-N,C2′]picolate blue-emitting phosphorescent chromophore core, DBF is a 2,7-diphenyl-9H-fluorene bridging core, DNaTPA and DPyTPA are deep blue-emitting fluorescent chromophores composed by rigid high-triplet-energy dendrons of triphenylamine-functionalized naphthalene or pyrene units, and the peripheral dendrons are connected with the ancillary ligand of the emitting core through nonconjugated ether linkage. Their photophysical, thermal, electrochemical, as well as electrophosphorescent properties were primarily studied. Both iridium (III) complexes exhibit high efficient blue emission in solution (38.5% and 19.2%) and a typical FIrpic emission in 1,3-bis(N-carbzolyl)benzene (mCP) matrix (27.0% and 24.1%). Simple bilayer phosphorescent organic light-emitting diodes (PHOLEDs) with a configuration of ITO/PEDOT:PSS/mCP:dopants/TmPyPB/Liq/Al achieved high efficiencies of 12.96 cd/A for current efficiency (CE), 6162 cd/m2 for brightness, 6.22% for external quantum efficiency (EQE), and 3.13 lm/W for power efficiency (PE) with Commission International de L'Eclairage (CIE) coordinates of (0.19 ± 0.01, 0.35 ± 0.02) at only 2 wt% blend of (DNaTPA)2DBF(FIrpic)2. (DPyTPA)2DBF(FIrpic)2-doped devices also reach efficiencies of (9.14 cd/A, 7167 cd/m2, 4.41%, 2.61 lm/W) at the same doping concentration. The results demonstrate that the introduction of dendritic blue-emitting fluorescent chromophore grafted into the blue phosphorescent chromosphere core through nonconjugated linkage is an efficient way to achieve high-efficiency sky-blue emission.  相似文献   

5.
Solid complexes of five derivatives of thio-Schiff bases with La(III) and Ce(III) ions were prepared and characterized by elemental and thermogravimetric analyses. The suggested general formula of the solid complexes is [ML2(H2O)X]·2H2O, whereM=trivalent lanthanide ion,L=Schiff base andX=Cl? or ClO 4 ? . Information about the water of hydration, the coordinated water molecules, the coordination chemistry and the thermal stability of these complexes was obtained and is discussed. Additionally, a general scheme of thermal decomposition of the lanthanide-Schiff base complexes is proposed.  相似文献   

6.
The electronic structures and photophysical properties of five iridium(III) complexes Ir(tfmppy)2(tpip) (1), Ir(dfppy)2(tpip) (2), Ir(afCNppy)2(tpip) (3), Ir(CNpyN3)2(tpip) (4), and Ir(2fphpta)2(tpip) (5) [where tfmppy = 4‐trifluoromethylphenylpyridine; dfppy =4,6‐difluorophenylpyridine; afCNppy = 6‐fluoro‐4‐octyloxy‐5‐cyano‐phenylpyridine; CNpyN3 = 2‐(4‐cyano‐phenyl)‐[1,2,3]‐triazole; 2fphpta=2‐(2,6‐difluoro‐phenyl‐[1,2,4]‐triazol‐3‐yl)‐pyridine; tpip=tetraphenylimido‐diphosphinate] have been investigated by using density functional theory (DFT) methods and time‐dependent DFT ones, aiming at elucidating the influences of different substituents and cyclometalated ligands on the emission properties and quantum yield. The calculated results revealed that the different substituents in 1 ‐ 3 have a great influence on the energy levels, in particular highest occupied molecular orbital. Meanwhile, we have also get a further insight into the reason for different phosphorescence quantum yields of the studied complexes. The higher quantum yield (Φ) reported for 1 was found to be closely related to both its smaller S1–T1 splitting energy ( ) and larger transition electric dipole moment ( ) upon the S0 → S1 transition. Complex 5 is expected to be a potential candidate for blue‐emitting material with good organic light‐emitting diodes performances. We propose that the optical properties of this class of materials can be tuned by the modifications of the cyclometalated ligands. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
New pyrimidine derivatives (pyr) have been synthesized using palladium-catalyzed Suzuki coupling reaction. These compounds can undergo cyclometalation with iridium trichloride to form bis-cyclometalated iridium complexes, (pyr)2Ir(acac) (acac = acetylacetonate; pyr = cyclometalated pyr). The substituents at the both cyclometalated phenyl ring and pyrimidine ring were found to affect both electrochemical and photophysical properties of the complexes. Computation results on these complexes are consistent with the electrochemical and photophysical data. The complexes are green-emitting with good solution quantum yields at ∼0.30. Light-emitting devices using these complexes as dopants were fabricated, and the device performance at 100 mA/cm2 are moderate: 9 (17 481 cd/m2, 4.8%, 18 cd/A, 5.1 lm/W); 10 (18 704 cd/m2, 4.9%, 18.9 cd/A, 4.7 lm/W); 13 (20 942 cd/m2, 5.4%, 21.0 cd/A, 6.1 lm/W).  相似文献   

8.
The semiempirical zero-differential-overlap molecular orbital model which was shown in earlier papers in this series to give a good account of the charge transfer and -* spectra of Fe(II) complexes with conjugated ligands such as 2,2-bipyridyl and 1,10-phenanthroline is extended to complexes having openshell ground states, such as those of Fe(III), and to complexes of Ru(II) and Ru(III). The results are used to assign the observed charge transfer and intra-ligand absorption bands to specific orbital transitions. Observed and calculated intensities are in good agreement: reasons are advanced for the much lower intensity of the charge transfer bands in Ru(III) compared to Ru(II) complexes.  相似文献   

9.
A series of heteroleptic cyclometalated Ir (III) complexes with low‐color‐temperature and low‐efficiency roll‐off properties, which cause a fast reduction in efficiency when the drive current increases, for organic light‐emitting devices are investigated theoretically to explore their electronic structures and spectroscopic properties. The geometries, electronic structures, lowest‐lying singlet absorptions and triplet emissions of (ptpy)2Ir(acac), and the theoretically designed models (ptpy)2Ir(tpip), (F‐ptpy)2Ir(acac), (F‐ptpy)2Ir(tpip), (F2‐ptpy)2Ir(acac) and (F2‐ptpy)2Ir(tpip), are investigated with density functional theory approaches, where ptpy denotes 4‐phenylthieno [3,2‐c] pyridine, acac denotes acetylacetonate, tpip denotes tetraphenylimido‐diphosphinate, F‐ptpy denotes 4‐(3‐fluorophenyl) thieno [3,2‐c] pyridine, and F2‐ptpy denotes 4‐(2,4‐difluorophenyl) thieno [3,2‐c] pyridine.  相似文献   

10.
A novel and highly efficient bis(trifluoromethyl)phenyl functionalized iridium(III) complex is designed and synthesized. The complex shows intensive greenish yellow phosphorescence (525?nm with 563?nm as shoulder), high photoluminescence efficiency (0.90) and moderate full width at half maximum (72?nm). The bulky bis(trifluoromethyl)phenyl moiety introduced into the complex provides the excellent solubility and effective steric hindrance for solution-processed organic light-emitting diodes. The maximum power efficiency and current efficiency of electroluminescence are 4.13?lm/W and 9.54?cd/A, respectively.  相似文献   

11.
A novel and highly efficient thiophenquinolone-based red iridium(III) complex bearing a bulky fluorophenyl moiety is designed and synthesized. The complex shows intensive red phosphorescence (596 nm with shoulder at 642 nm), high photoluminescence efficiency (0.62) and broad full width at half maximum (81 nm). The bulky fluorophenyl moiety introduced into the complex could improve the efficiency of electroluminescence with the maximum current efficiency, power efficiency and the external quantum efficiency up to 29.0 cd/A, 30.4 lm/W and 17.6% due to the effective steric hindrance in solid states.  相似文献   

12.
Summary The stoichiometric stability constants for La(III) and Y(III)L-serine complexes were determined by potentiometric methods at different ionic strengths adjusted with NaClO4 and at different temperatures. The overall changes in free energy (G o), enthalpy (H o), and entropy (S o) during the protonation ofL-serine and that accompanying the complex formation with the metal ions have been evaluated.
Komplexbildungskonstanten und thermodynamische Parameter für La(III)- und Y(III)-L-Serin-Komplexe
Zusammenfassung Die stöchiometrischen Komplexbildungskonstanten für La(III)- und Y(III)-L-Serin-Komplexe wurden mittels potentiometrischer Methoden bei verschiedenen Ionenstärken (mit NaClO4 adjustiert) und bei verschiedenen Temperaturen bestimmt. Die Änderungen in der freien Energie (G o), Enthalpie (H o) und Entropie (S o) während der Protonierung und der Komplexbildung mit den Metallionen wurden ermittelt.
  相似文献   

13.
The reactions of Ga(acac)3 with salicylaldoxime (saoH2) and methyl-salicylaldoxime (Me-saoH2) in dichloromethane/hexane afforded the complexes [Ga(acac)(saoH)2] (1) and [Ga(acac)3][Ga(acac)(MesaoH)2] (2), respectively, in high yields. The crystal structures of 1 and 2 have been determined by single-crystal X-ray crystallography. Both complexes are mononuclear with the Ga(III) atoms being in octahedral environments surrounded by two bidentate chelate R-saoH and one bidentate chelate acac ligands. A [Ga(acac)3] moiety has co-crystallized along with the methylsalicylaldoximato complex. Characteristic IR as well as NMR data are discussed in terms of the nature of bonding in the structures of the two complexes. 1H and 13C NMR data in CDCl3 indicate that the salicylaldoximato complexes isomerize in solution.  相似文献   

14.
Phosphorescent iridium(III) complexes are being widely explored for their utility in diverse photophysical applications. The performance of these materials in such roles depends heavily on their excited-state properties, which can be tuned through ligand and substituent effects. This concept article focuses on methods for synthetically tailoring the properties of bis-cyclometalated iridium(III) materials, and explores the factors governing the nature of their lowest excited state.  相似文献   

15.
A symmetrical host material, 2,7-di(9,9-dimethyl-9H-fluoren-1-yl)-9H-thioxanthen-9-one (DMBFTX), with TADF property was firstly developed. The red phosphorescent OLED based on this TADF host displays a lower EQEs rolloff of 38.8% at a luminance of 10 000 cd/m2 as compared to 71.2% of commercial mCP host, which is resulted from the upconversion of DMBFTX from triplet to singlet.  相似文献   

16.
Complexes of Co(III) with 2-hydroxyacetophenone-thiosemicarbazone, 2-hydroxy-3-methylacetophenonethiosemicarbazone and 2-hydroxy-4-methyl-acetophenonethiosemicarbazone, and the addition complexes of 2-hydroxy-acetophenone thiosemicarbazone with ammonia, pyridine, aniline,o-toluidine,m-toluidine andp-toluidine have been synthesized and characterized on the basis of their conductivities, electronic and infrared spectral data. All complexes are low-spin octahedral in nature. Various parameters have been obtained using ligand field theory.  相似文献   

17.
The dipole moment and polarizability changes have been determined from electroabsorption (EA) spectroscopy of solid films of fac tris(2-(phenyl)pyridinato,N,C2′)iridium (III) [Ir(ppy)3]. The maximum changes in the dipole moment |Δμ|S=(5.0±0.5) D/f (f is the local field correction factor: 1.3–1.7) accompany ground state to the lowest singlet, and |Δμ|T=(1.7±0.5) D/f ground state to the lowest triplet metal-to-ligand charge transfer (MLCT) excited states formation, while the average polarizability change Å3/f2 follows from the fitting procedure throughout the visible absorption spectrum range. The experimental values of |Δμ| as well as energy positions of the MLCT states correlate with the literature results of time-dependent density functional theory.  相似文献   

18.
Two phosphorescent complexes Ir(FFBI)2(pmp) and Ir(FFBI)2(pti) based on cyclometalated ligand 1-(4-fluorobenzyl)-2-(4-fluorophenyl)-1H-benzo[d]imidazole (FFBI) and ancillary ligands 2-(phenyliminomethyl)phenol (pmp) or 3-(pyridin-2-yl)-4,5,6,7-tetrahydro-2H-indazole (pti) were synthesized. The single crystal of Ir(FFBI)2(pmp) was obtained. The light emitting and electrochemical properties of these complexes were studied. The electroluminescent devices based on these two complexes with the structure of ITO/NPB (40 nm)/Ir complex: CBP (30 nm)/BCP (15 nm)/Alq (30 nm)/LiF (1 nm)/Al (100 nm) emitted cyan color, with high brightness and efficiencies. The maximum external quantum efficiencies reached to 6.8% and 11.6%, respectively.  相似文献   

19.
A series of novel biscyclometalated iridium (III) complexes with an ancillary disulfonated bathophenanthroline (DSBP(2-)) ligand, Ir(L)(2)DSBPNa, L = 2-phenylpyridine (ppy), 2,4-difluorophenylpyridine (fppy), and 1-phenylisoquinoline (piq) were found to have two isomeric forms. The chemical structures of the isomers were determined by the one- and two-dimensional (1)H and (13)C NMR studies. The isomeric state was proved to have originated from the disulfonate-related regio-isomer of the DSBP(2-) ligand.  相似文献   

20.
Terbium(III) and dysprosium(III) nitrate complexes with variously substituted 2,6-diphenylpiperidin-4-ones (L1)-(L10) of general formula [Ln(L)(NO3)2(H2O)2]NO3 have been synthesized. These complexes have been characterized by analytical, spectral and thermal studies. Molar conductance data show that these complexes are 1:1 electrolytes. The presence of two coordinated water molecules is confirmed by thermal and infrared spectral studies. IR spectral data indicate that piperidin-4-ones, in spite of having two coordinating sites, are monodentate, coordinating only through ring nitrogen. The IR and conductance data reveal the presence of two bidentate and one ionic nitrate groups. The nephelauxetic ratio (β), covalency factor (b1/2) and Sinha’s parameter (δ) evaluated from electronic spectral data of dysprosium(III) complexes indicate a little covalency in metal-ligand bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号