首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deposition of redox-active metal–organic frameworks (MOFs) as thin films on conductive substrates is of great importance to improve their electrochemical performance and durability. In this work, a series of metalloporphyrinic MOF crystals was successfully deposited as thin films on carbon fiber paper (CFP) substrates, which is an alternative to rigid glass substrates. The specific dimensions of the obtained films could be adjusted easily by simple cutting. Metalloporphyrinic MOFs on CFP with different active metal species have been employed for electrochemical conversion of the carcinogenic nitrite into the less toxic nitrate. The MOFs on CFP exhibit remarkable improvement in terms of the electrocatalytic performance and reusability compared with the electrodes prepared from MOF powder. The contribution from metal species of the porphyrin units and reaction mechanisms was elucidated based on the findings from X-ray photoelectron spectroscopy (XPS) and in situ X-ray absorption near edge structure (XANES) measured during the electrochemical reaction. By integrating the redox-active property of metalloporphyrinic MOFs and high conductivity of CFP, MOF thin films on CFP provided a significant improvement of electrocatalytic performance to detoxify the carcinogenic nitrite with good stability.  相似文献   

2.
Many sophisticated chemical and physical properties of porous materials strongly rely on the presence of the metal ions within the structures. Whereas homogeneous distribution of metals is conveniently realized in metal–organic frameworks (MOFs), the limited stability potentially restricts their practical implementation. From that perspective, the development of metal–covalent organic frameworks (MCOFs) may address these shortcomings by incorporating active metal species atop highly stable COF backbones. This Minireview highlights examples of MCOFs that tackle important issues from their design, synthesis, characterization to cutting-edge applications.  相似文献   

3.
X-ray radiation is commonly employed in clinical practice for diagnostic and therapeutic applications. Over the past decade, developments in nanotechnology have led to the use of high-Z elements as the basis for innovative new treatment platforms that enhance the clinical efficacy of X-ray radiation. Nanoscale metal–frameworks (nMOFs) are coordination networks containing organic ligands that have attracted attention as therapeutic platforms in oncology and other areas of medicine. In cancer therapy, X-ray activated, high-Z nMOFs have demonstrated potential as radiosensitizers that increase local radiation dose deposition and generation of reactive oxygen species (ROS). This minireview summarizes current research on high-Z nMOFs in cancer theranostics and discusses factors that may influence future clinical application.  相似文献   

4.
The fabrication of state-of-the-art membranes with customized functions and high efficiency is of great significance, but presents challenges. Emerging metal-organic frameworks (MOFs)/polymer hybrid membranes have provided bright promise as an innovative platform to target multifunctional hybrid materials and devices; this is thanks to their unique properties, which come from three components that are collaboratively enforced. This minireview provides a brief overview of recent progress in the construction of such hybrid membranes, and highlights some of their very important applications in separation, conduction, and sensing.  相似文献   

5.
Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi-shelled hollow chromium (III) terephthalate MOFs (MIL-101) with single-crystalline shells through step-by-step crystal growth and subsequent etching processes. This strategy relies on the creation of inhomogeneous MOF crystals in which the outer layer is chemically more robust than the inner layer and can be selectively etched by acetic acid. The regulation of MOF nucleation and crystallization allows the tailoring of the cavity size and shell thickness of each layer. The resultant multi-shelled hollow MIL-101 crystals show significantly enhanced catalytic activity during styrene oxidation. The insight gained from this systematic study will aid in the rational design and synthesis of other multi-shelled hollow structures and the further expansion of their applications.  相似文献   

6.
7.
8.
A new family of porous metal–organic frameworks (MOFs), namely alkali phosphonate MOFs, is reported. [Na2Cu(H4TPPA)] ⋅ (NH2(CH3)2)2 ( GTUB-1 ) was synthesized using the tetratopic 5,10,15,20-tetrakis[p-phenylphosphonic acid] porphyrin ( H8-TPPA ) linker with planar X-shaped geometrical core. GTUB-1 is composed of rectangular void channels with BET surface area of 697 m2 g−1. GTUB-1 exhibits exceptional thermal stability. The toxicity analysis of the ( H8-TPPA ) linker indicates that it is well tolerated by an intestinal cell line, suggesting its suitability for creating phosphonate MOFs for biological applications.  相似文献   

9.
Transition metal complexes are well-known homogeneous electrocatalysts. In this regard, metal–organic frameworks (MOFs) can be considered as an ensemble of transition metal complexes ordered in a periodic arrangement. In addition, MOFs have several additional positive structural features that make them suitable for electrocatalysis, including large surface area, high porosity, and high content of accessible transition metal with exchangeable coordination positions. The present review describes the current state in the use of MOFs as electrocatalysts, both as host of electroactive guests and their direct electrocatalytic activity, particularly in the case of bimetallic MOFs. The field of MOF-derived materials is purposely not covered, focusing on the direct use of MOFs or its composites as electrocatalysts. Special attention has been paid to present strategies to overcome their poor electrical conductivity and limited stability.  相似文献   

10.
Metal–organic frameworks (MOFs), with diverse metal nodes and designable organic linkers, offer unique opportunities for the rational engineering of semiconducting properties. In this work, we report a mixed-linker conductive MOF system with both tetrathiafulvalene and Ni-bis(dithiolene) moieties, which allows the fine-tuning of electronic structures and semiconductive characteristics. By continuously increasing the molar ratio between tetrathiafulvalene and Ni-bis(dithiolene), the switching of the semiconducting behaviors from n-type to p-type was observed along with an increase in electrical conductivity by 3 orders of magnitude (from 2.88×10−7 S m−1 to 9.26×10−5 S m−1). Furthermore, mixed-linker MOFs were applied for the chemiresistive detection of volatile organic compounds (VOCs), where the sensing performance was modulated by the corresponding linker ratios, showing synergistic and nonlinear modulation effects.  相似文献   

11.
The effect of metal on the degree of flexibility upon evacuation of metal–organic frameworks (MOFs) has been revealed with positional control of the organic functionalities. Although Co-, Cu-, and Zn-based DMOFs (DMOF = DABCO MOF, DABCO = 1,4-diazabicyclo[2.2.2]octane) with ortho-ligands (2,3-NH2Cl) have frameworks that are inflexible upon evacuation, MOFs with para-ligands (2,5-NH2Cl) showed different N2 uptake amounts after evacuation by metal exchange. Considering that the structural analyses were not fully sufficiently different to explain the drastic changes in N2 adsorption after evacuation, quantum chemical simulation was explored. A new index (η) was defined to quantify the regularity around the metal based on differences in the oxygen-metal-oxygen angles. Within 2,5-NH2Cl, the η value becomes larger as the metal are varied from Co to Zn. A large η value means that the structures around the metal center are less ordered. These results can be used to explain flexibility changes upon evacuation by altering the metal cation in this regioisomeric system.  相似文献   

12.
Two new heterometallic metal–organic frameworks (MOFs), LnZnTPO 1 and 2 , and two homometallic MOFs, LnTPO 3 and 4 (Ln=Eu for 1 and 3 , and Tb for 2 and 4 ; H3TPO=tris(4-carboxyphenyl)phosphine oxide) were synthesized, and their structures and properties were analyzed. They were prepared by solvothermal reaction of the C3-symmetric ligand H3TPO with the corresponding metal ion(s) (a mixture of Ln3+ and Zn2+ for 1 and 2 , and Ln3+ alone for 3 and 4 ). Single-crystal XRD (SXRD) analysis revealed that 1 and 3 are isostructural to 2 and 4 , respectively. TGA showed that the framework is thermally stable up to about 400 °C for 1 and 2 , and about 450 °C for 3 and 4 . PXRD analysis showed their pore-structure distortions without noticeable framework–structure changes during drying processes. The shapes of gas sorption isotherms for 1 and 3 are almost identical to those for 2 and 4 , respectively. Solvothermal immersion of 1 and 2 in Tb3+ and Eu3+ solutions resulted in the framework metal-ion exchange affording 4 and 3 , respectively, as confirmed by photoluminescence (PL), PXRD, IR, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and energy-dispersive X-ray (EDX) analyses.  相似文献   

13.
In this work, pyrazine ( A ), aminopyrazine ( B ), quinoxaline ( C ), and 5,6,7,8-tetrahydroquinoxaline ( D ) have been screened out among a large number of pyrazine derivatives to construct Hofmann-type metal–organic frameworks (MOFs) Fe(L)[M(CN)4] (M=Pt, Pd) with similar 3D pillared-layer structures. X-ray single-crystal diffraction reveals that the alternate linkage between M and FeII ions through cyano bridges forms the 2D extended metal cyanide sheets, and ligands A – D acted as vertical columns to connect the 2D sheets to give 3D pillared-layer structures. Subsequently, a series of bivariate MOFs were constructed by pairwise combination of the four ligands A–D , which were confirmed by 1H NMR, PXRD, FTIR, and Raman spectroscopy. The results demonstrated that ligand size and crystallization rate play a dominant role in constructing bivariate Hofmann-type MOFs. More importantly, the spin-crossover (SCO) properties of the bivariate MOFs can be finely tuned by adjusting the proportion of the two pillared ligands in the 3D Hofmann-type structures. Remarkably, the spin transition temperatures, Tc↑ and Tc↓ of Fe( A )x( B )1−x[Pt(CN)4] (x=0 to 1) can be adjusted from 239 to 254 K and from 248 to 284 K, respectively. Meanwhile, the width of the hysteresis loops can be widened from 9 to 30 K. Changing Pt to Pd, the hysteresis loops of Fe( A )x( B )1−x[Pd(CN)4] can be tuned from 9 (Tc↑=215 K, Tc↓=206 K) to 24 K (Tc↑=300 K, Tc↓=276 K). This research provides wider implications in the development of advanced bistable materials, especially in precisely regulating SCO properties.  相似文献   

14.
The photoinduced dynamic behavior of flexible materials has received considerable attention for potential applications, such as in data storage or as smart optical devices and molecular mechanical actuators. Until now, precisely controlling expansion and contraction with light has remained a challenge. Unraveling the detailed mechanisms of photoinduced structural transformations remains a critical step necessary to understand the molecular architecture necessary for the design of sensitive photomechanical actuators. Herein, a two-dimensional flexible metal–organic framework [Zn2(bdc)2(3-CH3-spy)2]⋅H2O ( Zn2-1 ; H2bdc=1,4-benzenedicaboxylic acid; 3-CH3-spy=3-methylstyrylpyridine) with a positive volumetric thermal expansion coefficient of +78.78×10−6 K−1 is reported. Upon light irradiation at different wavelengths, the MOF underwent a [2+2] cycloaddition, which afforded a family of isomeric, three-dimensional MOFs ( Zn2-2 n , n=a–d) in a single-crystal-to-single-crystal (SCSC) manner. An unprecedented phenomenon, that is, photoinduced nonlinear contraction (PINC), was observed during this conversion. The PINC is caused by conformational changes in the 3-CH3-spy and bdc2− ligands, the bending of metal–ligand bonds, and the local distortion of the paddle-wheel SBUs. The formation of a “wrinkle morphology” on the crystal surface after the photoreaction was observed by AFM. This PINC behavior can broaden the studies on materials expansion and offer a photodriven approach for the future design of supersensitive photomechanical actuators.  相似文献   

15.
Two new rod-packing metal–organic frameworks (RPMOF) are constructed by regulating the in situ formation of the capping agent. In CPM-s7, carboxylate linkers extend 1D manganese-oxide chains in four additional directions, forming 3D RPMOF. The substitution of Mn2+ with a stronger Lewis acidic Co2+, leads to an acceleration of the hydrolysis-prone sulfonate linker, resulting in presence of sulfate ions to reduce two out of the four carboxylate-extending directions, and thus forming a new 2D rod-packing CPM-s8. Density functional theory calculations and magnetization measurements reveal ferrimagnetic ordering of CPM-s8, signifying the potential of exploring 2D RPMOF for effective low-dimensional magnetic materials.  相似文献   

16.
When components of a metal–organic framework (MOF) and a crystal growth modulator diffuse through a gel medium, they can form arrays of regularly-spaced precipitation bands containing MOF crystals of different morphologies. With time, slow variations in the local concentrations of the growth modulator cause the crystals to change their shapes, ultimately resulting in unusual concave microcrystallites not available via solution-based methods. The reaction–diffusion and periodic precipitation phenomena 1) extend to various types of MOFs and also MOPs (metal–organic polyhedra), and 2) can be multiplexed to realize within one gel multiple growth conditions, in effect leading to various crystalline phases or polycrystalline formations.  相似文献   

17.
18.
Metal–organic frameworks (MOFs), as a porous frame material, exhibit considerable electrical conductivity. In recent decades, research on the proton conductivity of MOFs has made gratifying progress. In this review, the designable guest molecules encapsulated into MOFs are summarized and generalized into four types in terms of promoting proton conductive performance, and then recent progress in the promotion of proton conductivity by MOFs encapsulating guest molecules is discussed. The existing challenges and prospects for the development of this strategy for promoting MOFs’ proton conductivity are also listed.  相似文献   

19.
We report the dual postsynthetic modification (PSM) of a metal–organic framework (MOF) involving the microscopic conversion of C−H bonds into C−C bonds and the mesoscopic introduction of hierarchical porosity. MOF crystals underwent single-crystal-to-single-crystal transformations during the electrophilic aromatic substitution of Co2(m-DOBDC) (m-DOBDC4−=4,6-dioxo-1,3-benzenedicarboxylate) with alkyl halides and formaldehyde. The steric hindrance caused by the proximity of the introduced functional groups to the coordination bonds reduced bond stability and facilitated the transformation into hierarchically porous mesostructures by etching with in situ generated protons (hydroniums) and halides. The numerous defect sites in the mesostructural MOFs are potential water-sorption sites. However, since the introduced functional groups are close to the main adsorption sites, even methyl groups are able to considerably decrease water adsorption, whereas hydroxy groups increase adsorption at low vapor pressures.  相似文献   

20.
The resurgence of interest in the hydrogen economy could hinge on the distribution of hydrogen in a safe and efficient manner. Whilst great progress has been made with cryogenic hydrogen storage or liquefied ammonia, liquid organic hydrogen carriers (LOHCs) remain attractive due to their lack of need for cryogenic temperatures or high pressures, most commonly a cycle between methylcyclohexane and toluene. Oxidation of methylcyclohexane to release hydrogen will be more efficient if the equilibrium limitations can be removed by separating the mixture. This report describes a family of six ternary and quaternary multicomponent metal–organic frameworks (MOFs) that contain the three-dimensional cubane-1,4-dicarboxylate (cdc) ligand. Of these MOFs, the most promising is a quaternary MOF (CUB-30), comprising cdc, 4,4′-biphenyldicarboxylate (bpdc) and tritopic truxene linkers. Contrary to conventional wisdom that adsorptive interactions with larger, hydrocarbon guests are dominated by π–π interactions, here we report that contoured aliphatic pore environments can exhibit high selectivity and capacity for LOHC separations at low pressures. This is the first time, to the best of our knowledge, where selective adsorption for cyclohexane over benzene is witnessed, underlining the unique adsorptive behavior afforded by the unconventional cubane moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号